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1.  EXECUTIVE SUMMARY 
 

The purpose of this task is to establish a standard uncertainty analysis scheme which 

is to be applied for the methods that have been put forward in Tasks 4.2, 4.3 and 4.4 

for modelling of the stochastic process of ship capsize after flooding occurrence.  

 

The assessment of ship stability deterioration process can be performed through 

stability standards calculation (i.e. standards in SOLAS), analytical model, 

performance-based numerical simulations and benchmarking model experiments. The 

discrepancies among these predictive applications have been observed even for 

identical damage scenarios of a specific ship. Thus the variation of the predictions 

from the physical model tests as well as the spread of the results of different 

approaches needs to be quantified and ultimately uncertainty bounds should be 

assigned to identify deviations. 

 

For better describing the physical phenomenon of ship capsizing, the experimental 

data as documented in Task 4.1, has been given greater assent as one of the most 

reliable sources of information for the proposed method, which allows for quantifying 

inherent uncertainties associated with the survivability assessment process.  

 

The solution used for explicit and continuous uncertainty quantification is as follows: 

 

����, � � �	
� � Φ�56.54 � 1.64�� � 21.18 ��
��� � 43.42 �

� � 0.43��� � 38.83 !"
!�

	� 
 

This model provides the probability that a ship will capsize within 30 minutes when 

she is exposed to a specific flooding extent, given the continuous information of Hs, 

KG/KMT, T/D, Heel and Ld/Ls. With respect to the damage case P6-7.1.0 as tested in 

Task 4.1, predictions of the deterioration process of ship stability derived from both 

theoretical methods and model experiments are shown as below: 
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With the established model, it is possible to assess the uncertainty in the model 

output	��� � 30$%&, � � �	
|(,)�, as governed by the uncertainties in continuous 

input parameters (X= Hs, 	�� ���⁄ , 	� �⁄ , Heel, 	!" !�⁄ ). The uncertainty in X is 

specified as the probability density function. The uncertainty in ����, � � �	
│(, )� 

is calculated by propagating uncertainties in X. With the identified Probit regression 

model for Bayesian data analysis, model coefficients ( are regarded as the sensitivity 

indicator describing the impact of X on the outcome	����, � � �	
│(, )�.  

 

Finding solution for unknown parameters ( is the most critical step in quantifying the 

uncertainty propagation. Explicit uncertainty quantification is performed by 

establishing uncertainty bounds for each sensitivity coefficient. Bayesian inference 

and MCMC algorithm are adopted to approximate the posterior distributions of 

regressor indices	��(|,�, as shown in the figure below.  

 

 
 

Sensitivity study is subsequently conducted by ranking the contributions of individual 

inputs on the uncertainty in the output	-�., as shown below.  
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It appears that the extent of flooding is the most critical information needed for 

assessment of criticality of flooding situation.  
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2. INTRODUCTION 
 

The occurrence of ship flooding event gives rise to a major threat to life of all 

onboard, the environment as well as the property. Therefore, a fast and rational 

measurement of ship survivability following flooding is crucial for facilitating 

informed and quick decision making for possible aversion of the ultimate 

consequences. 

 

Although new regulations governing state of ship stability, namely SOLAS2009 CH 

II provide with probabilistic models, these do not have sufficient resolution to reflect 

upon typical loss circumstances. 

 

Therefore, as it has been explicitly explained in the deliverables of Task 4.2, 4.3, and 

4.4, “time to capsize” can be considered as efficient and intuitive means to quantify 

ship survivability.  

 

In order to achieve an optimal solution, the following principles should be adhered to: 

  

• A predictive probabilistic model should be proposed with dominant input 

variables which are capable of describing key accidents characteristics included. 

The underlying uncertainty in the model outcome needs to be estimated easily 

and simultaneously so that a desired (relatively conservative) survivability level 

can be defined.  

• Key influential variables linking to the ship behaviour at damaged conditions 

should be included and well-defined in the model. These refer to sea 

environment, intact conditions of the ship just before accidents, and the extent of 

flooding, etc. All the information should be ultimately cooperated with the 

survivability measure “time to capsize” and presented in probabilistic manner. 

• The model should be derived through a plausible inference process using the 

existing experimental data assembled from a series of benchmarking tests 

conducted during several research projects (e.g. HARDER (HARDER, 2003), 

SAFEDOR (GL, 2002)), which are fully or partially supported by the European 

Commission. Only by doing so, it can offer the flexibility and reliability to assess 

any independent flooding case.  

• As the aforementioned entails a methodology that is able to perform probabilistic 

model development and, importantly, to quantify the associated uncertainty, this 

can be readily employed for addressing similar time-critical accidental events in a 

probabilistic framework.   
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The report is structured as follows: 

 

• The significance of this work concerning ship survivability assessment under the 

new probabilistic framework is highlighted in the introduction chapter. 

• The decision-making procedure on the selection of appropriate multivariate 

models for model training is depicted. 

• A unique model estimation methodology based on Bayesian inference and 

Markov Chain Monte Carlo algorithm is disclosed in detail. This seems as a 

tailored solution for addressing the issue of uncertainty quantification. 

• The established model is deployed for measuring the rate of ship stability loss 

when the ship is exposed to a specific flooding event within given time. Two 

steps including model selection and model validation give a tangible 

representation of the proposed methodology. 

• Extensive uncertainty analysis and sensitivity studies are conducted for better 

understanding of the contributions of individual inputs in the model to the 

uncertainty in the output. A solution is put forward for minimizing the uncertainty 

in the model output through quantifying uncertainties in a set of input parameters 

in the model.  
 

 

 

 

Figure 1: Structure of the Report 
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3. MODEL IDENTIFICATION 
 

For the purpose of transforming the available information into interpretable and 

manageable knowledge, a proper mathematical model needs to be identified so that 

the collected benchmarking data can be properly utilized to assist uncertainty 

quantification. Traditionally, simple statistical approaches (e.g. liner models) are 

adopted to explain the correlations between the various variables. However, 

considering the characteristics of the data at hand, it is important to bear in mind: i) 

the output variable is binary (i.e. capsize or not capsize within a given period); ii) 

there is more than a handful of variables influencing the status of the output variable; 

iii) the output measure needs to be presented in a probabilistic manner to resonate 

well with the existing probabilistic safety framework in the maritime industry. 

 

Considering the above, it becomes apparent that more sophisticated modelling 

techniques are needed in this case. Regarding this, the field of multivariate data 

analysis can be considered as a promising aspect to be further investigated. A 

classification of the various multivariate statistical techniques is presented in 

Multivariate Data Analysis (Hair, 2009). As it is revealed, the selection of the 

appropriate multivariate techniques for a specific research problem should be made on 

the basis of the research objectives and the nature of the data. 
 

This chapter attempts to describe a decision procedure of selecting the appropriate 

multivariate statistical models for further training. The procedure comprises two steps: 

 

• The first step deals with model preparation, which starts with a definition of the 

research problem and put forward a conceptual model describing the relationships 

to be examined.  

• The second step addresses the identification and definition of specific 

multivariate models to be deployed for further training. 

 

3.1 Preparation of Model Building up 
 

The starting point for a multivariate analysis is to define the research problem and 

analysis objectives in conceptual terms before specifying any variables or measures. 

Considering the subject to be investigated, it is obvious that a dependent relationship 

between ship behaviour when subject to flooding and a list of important influential 

variables is sought to be established. These variables (independent) refer to: 

 

• Loading conditions (e.g. draft, centre of gravity) 

• Watertight architecture (e.g. subdivision arrangement, and watertight door status) 

• Damage characteristics (e.g. location, extend) 

• Sea environment (e.g. wave height and direction, wind) 

• Etc. 

 

Regarding the output (dependent) variable, an appropriate measure would be the 

indication of whether the ship capsizes within a given time interval. In this context, 

the outcome can be best described as a binary response, which is denoted by either 0 

or 1 in the experiment.  
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3.2 Identification of Multivariate Models 
 

Having the research objective specified, it is important to realize the measurement 

characteristics (format) of both dependent and independent variables recorded in the 

available data. In this respect, all the independent variables are measure metrically 

(i.e., quantitative data) while, in contrast, the dependent variable is nonmetric (i.e., 

qualitative data). Hence, on the basis of flow chart as shown in Figure 2, both multiple 

discriminant analysis and logistic regression techniques can be promising solutions 

for addressing the identified problems. 

 

Nevertheless, comparing discriminant analysis and logistic regression techniques, the 

latter offer a platform where all types of independent variables (metric and nonmetric) 

can be accommodated. More importantly, the logistic regression technique is 

specifically designed to deal with binary dependent variables (Yes/No, True/False, 

Capsize/Survive, etc.). As a result, logistic regression technique has been selected for 

establish such a relationship between a single dependent variable of ship response and 

a list of different influential independent variables. The general form is shown in 

equation 1.  
 

                    �															 � /0 � /1 � /2 � ⋯ � /4  (1) 

                           (binary nonmetric)     (nonmetric and metric) 

 

Due to the categorical response Y is defined as a binary random variable (i.e. either 

survival or capsizing denoted by 1 or 0), such binary outcomes can be described by 

expressing them from a probabilistic perspective. In this case, the distribution of Y is 

specified by probability ��� � 1� � 5 of capsize and ��� � 0� � 1  5  of survive. 

This implies	6 � 7��� � 5. Hence, a reformulation of equation (1) is performed by 

considering the probability 5 as the output (dependent) variable, which is shown in 

equation (2). 

 

						5�/� � ��� � 1|)� � 8 � 90/0 � 91/1 � ⋯ � 94/4 � 8 � 9) (2) 

 

Where:  i) the response variable Y has a binomial distribution 

 ii) Explanatory variables are represented by the design matrix X 

 iii) α is the intercept 

 iv) β represents a set of regression coefficients for all predictor variables      

and βX is defined as the linear predictor 

 

As can be noted, equation (2) is a simple linear probability model. However, there is 

an inherent difficulty arising from structure defect to restrict the estimated probability    

π to be within the interval [0, 1]. In this situation, it would be very desirable to have a 

transformation function to connect the linear predictors on the left hand side with a 

probability function on the left hand size.  

 

As a result, the aforementioned difficulties entail the interested model to be equipped 

with the features of the Generalized Linear Model (GLM) in statistic terms. A GLM 

allows the linear predictors to be correlated with the response variable via a link 

function (Agresti, 2007). The link function can be written as :�. � which relates a 

function of the expectation to the linear predictors. A typical GLM is defined in 

equation (3). 



FLOODSTAND Uncertainty bounds on time to capsize models  02.02.2012 

FP7-RTD-218532 

D4.5    Page 9

 
 

Figure 2 Selecting a Multivariate Technique 
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								:;7��|<�= � :;5�/�= � 8 � 9<  (3) 

  

To ensure that the predicted probabilities 5  fall into the 0-1 interval, it is often 

modelling with a cumulative probability distribution: 

 

5 � > ?�@�. A@
B

CD
 

 

Where ?�@� E 0 and	F ?�@�D
CD . A@ � 1. The selection of a proper probability density 

function ?�@� will impact on the type of GLMs to be used. In considering the defined 

question with binary outcomes, two common GLMs of probit model and logit model 

fulfil the requirements of providing necessary link functions. The probit model will be 

mainly discussed from this context, where ?�@� is assumed to be normal, with mean 

zero and variance	G1, therefore: 

 

π � 1
σ√2π > exp

N

CD
O 1

2 Px  μ
σ R1S ds � Φ Px  μ

σ R		  

(4) 

 

Where Φ denotes the cumulative probability function for the standard normal 

distribution N (0, 1), thus the probit link function :;5�/�=  exists as an inverse 

function Φ
-1

(.).Hence, in GLM form, 

 

							ΦC0;5�/�= � 8 � 90/0 � 91/1 � ⋯ � 94/4 � 8 � ()  (5) 

 

Consequently, the ultimate selected multivariate model is depicted in equation (6): 

 

				5�/� � ��� � 1|(, )� � Φ Px  μ
σ R � Φ�8 � ()�		  

(6) 

 

Overall, the identified model offers the following key characteristics and benefits: 

 

• The response curve for 5�/�	[or for	1  5�/�, when	9 V 0] has the appearance of 

the normal CDF with mean 6 � 8 9⁄ 	and standard deviation	G � 1 |9|⁄ , which 

has a sigmoid profile as shown in Figure 3. This flexibility offers a unique 

platform for presenting the response object, “Ship behaviour” after damage based 

on a set of key random independent variables describing accident characteristics.  

• The model can be easily extended to include more variables simultaneously in the 

linear predictors (i.e.9)). This provides a convenient and interpretable means to 

perform sensitivity study the subsequent model adjustment and validation.  
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Figure 3 Probit Regression Function 
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4. BINARY REGRESSION MODEL ESTIMATION 
 

The identified Probit model is a useful data analysis tool to tackle complex 

multivariate data analysis problems. This chapter focuses on detailing appropriate 

model estimation techniques. Classical model training technique (such as Maximum 

likelihood estimation) can be easily applied in this case. However, considering the one 

of the key objectives of this task is to quantify uncertainties associated with the 

estimations/predictions, a unique model training technique, Bayesian inference, is 

adopted for this study. As Bayesian inference technique draws the latest development 

in advance mathematical simulation techniques, (i.e. Markov Chain Monte Carlo 

(MCMC)), it has been increasingly recognized as a powerful means for inference 

making through probability distribution updating, model training. 

 

Following a brief discussion of the underlying considerations for selecting Bayesian 

inference technique rather than maximum-likelihood approach, this chapter will 

elaborate in details on the Bayesian method and its corresponding application for 

Probit model training. Emphasis will be placed on how MCMC algorithm can be 

employed for approximating the posterior distribution of the interested variables (e.g. 

model coefficients in this case). 

 

4.1 The Underlying Consideration 
 

The methods based on maximum likelihood are proper to work out the parameters of 

generalized linear models. With the identified binary response regression model 

presented in equation (6), this dependent relationship can be established with ease 

once the model coefficients (i.e.8, 9) to be estimated. The implementation of the 

maximum likelihood approach is generally based on Newton-Raphson algorithm to 

iteratively converge towards the maximum value of the likelihood function. For 

instance, an iterative weighted least squares procedure as depicted in (Charnes et al., 

1976) is frequently applied for maximum likelihood estimation of model parameters.  

 

On the other hand, the fundamental of Bayesian theory came first between the late 

17
th

 and early 18
th

 centuries, but practical Bayesian analysis has only recently become 

available. This availability is mostly attributed to the MCMC methods and the greatly 

improved computing technologies in the last 20 years. A major limitation towards 

more widespread implementation of Bayesian approaches is that obtaining the 

posterior distribution often requires the integration of high-dimensional functions. 

This can be computationally very difficult, but the idea of MCMC simulation is in a 

sense to bypass the mathematical operations rather than to implement them. 

 

Comparing maximum-likelihood and Bayesian inference approaches, it is very 

important to understand the merits and limitations of the each technique.  

 

• The maximum-likelihood approach is a powerful and well-accepted model 

training technique. However, the quality of the outcome is heavily dependent on 

the size of the sampled data. In the case of large samples, the method can be very 

precise. However, the maximum likelihood estimation can be heavily biased with 

small numbers of sampled data. In the respect, it is important to bear in mind that 

the amount of experiment data can be collected regarding ship survivability is 

always restricted by the allocated resources (in terms of time and fund). Hence, 
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Prior

Data

PosteriorBayes’

Theorem

the objective of reflecting the status of the ship survivability of thousands of ships 

sailing worldwide by using only a very limited experimental data in the maritime 

industry can be surely considered as a small sample size problem. And, moreover, 

it is expected that such difficulties will remain to be a challenge in the foreseeable 

future. 

• In contrast, Bayesian inference approach is much less sensitive to the changes of 

the sample size. This is because the well-founded Bayes’ theorem can naturally 

combine the evidence from both collected data and prior information. A major 

barrier for the wider adoption of Bayesian method in the past is due to the 

computation complexity (e.g. random sampling). However, such a barrier can be 

easily overcome with today’s computation capability. 

 

On the basis of the foregoing, it seems that Bayesian methods suit better to the 

intended study. It is acknowledged that practical Bayesian analysis sometimes is more 

complex. For instance, the size of the parameter space can become extremely large for 

problems involving multiple parameters, such as 	�W � 8, 90, … , 94� , hence the 

subsequent computation is massive, which make it infeasible to make the exact 

inference. Nevertheless, with the profoundly increased computing power in the last 20 

years, the MCMC will be put forward to solve the previously intractable problems. 

 

4.2 Bayes’ rule 
 

A key feature of Bayesian statistics is that Bayes’ theorem synthesizes two separate 

sources of information about the interested parameters. The first source is the sampled 

data, expressed formally by the likelihood function. The second is the prior 

distribution, which represents additional information that is available beforehand. 

Figure 4 shows a schematic representation of this process.  The result of combining 

the prior information and data in this way is the posterior distribution, from which 

inferences about parameters can be derived. The computation process is explained 

using Bayes’ equation (Lee, 2004), 

 
 

Figure 4 Synthesis of information by Bayes’ theorem 
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��Y|Z� � ��Z|Y���Y�
��Z� � ��Z|Y���Y�

∑ ��Z|Y���Y� 
 

(7) 

 

Where Y can be either a single or a set of unknown parameters and y is the observed 

data. Then:  

 

• The likelihood function 	��Z|Y�  is the conditional probability of data y 

depending on parameter 	Y , which is also the fundamental to frequentist 

inference.  

• The prior distribution ��Y�  is used only in the Bayesian approach. The 

assignment of the values should be based on the additional information that is 

available. 

• If the range of possible values of Y is assumed to be discrete, summation can 

be performed.  

 

In practice, Bayes’ equation (7) can be simplified to,  

 

��Y|Z� ∝ ��Z|Y���Y� (8) 

 

Where the proportionality symbol  expresses the fact that the product of the 

likelihood function and the prior distribution on the right hand side of the equation (8) 

must be scaled to integrate to 1 over the range of plausible 	θ  values for it to be a 

proper probability distribution. The scaled product 	P�θ|y� is defined as the posterior 

distribution for 	θ  given the data, and expresses what is now known about 	θ  based 

on both the sample data and prior information. A better illustration of how Bayes’ 

theorem works is Figure 5. 

 

 
 

Figure 5 Example of a triplot. Prior density (dashed), likelihood (dotted) and 

posterior density (solid) 
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4.3 Markov Chain Monte Carlo simulation for Posterior Approximation  
 

4.3.1 Metropolis-Hastings Algorithm 
 

For a continuous parameter space 	Y , Bayes’ formula in equation (7) for the 

posterior distribution is  

 

��Y|Z� � ��Z|Y���Y�
F ��Z|Y���Y�AY 

 

(9) 

 

This equation is often hard to calculate due to the integral in the denominator. 

Particularly if there are n unknown parameters, such as	�W � 8, 90, … , 94C0�, then 

the denominator involves integration over n-dimensional parameter space which 

becomes intractable for large values of n. In this case a numerical method for 

calculating complex integrals and hence making inference about W is required. 

The method is called MCMC combines two methods: Monte Carlo integration and 

Markov chain sampling. As suggested by its name, there are two important 

features associated with MCMC techniques: 

 

• MCMC has the feature of Monte Carlo integration method which simplifies a 

continuous distribution by taking discrete samples. It is useful when a 

continuous distribution is too complex to integrate explicitly but can readily be 

sampled (Gelman, 2004). For instance, there is a continuous distribution 

of 		��W� in Figure 6(a) which can be approximated by a histogram of the 

discrete samples in Figure 6(b). The larger number of samples leads to a closer 

approximation to the continuous distribution. Hence, getting back to the 

original problem is to evaluate the posterior distribution of model coefficients, 

if a histogram is a reasonable approximation to ��9|Z�	for each coefficient, 

then any inference about 9 can be made by simply using the sampled values. 

Moreover, in Figure 6, it is able to sample Y from		��W� directly, and hence 

numerous independent and identically distributed random Y can be generated, 

that is simple to obtain Monte Carlo approximations to posterior quantities. 

However, drawing samples from ��W�  is not always achievable because it 

may have a complex, or even unknown form.  

• The other feature of MCMC methods is to allow drawing samples from the 

target density		��Y� follows a Markov chain. This method has the Markov 

property (Bartlett, 1978), which entails the next sample in the chain is 

dependent only on the previous sample. So in this case, a chain of samples 

`Y�0�, … , Y�4�a can be built up after specifying a starting value	Y��� (see Figure 

7). Two of the most popular MCMC algorithms: the Metropolis-Hastings and 

the Gibbs samplers can be used for generating Markov chains to approximate 

the target probability distribution. The former will be put forward for further 

applications 
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Figure 6 (a) a continuous distribution of		��W�; (b) Approximating		��W� using 

discrete random samples, for sample size of 10,000 and bin width of 0.1. 

 

 
 

Figure 7 A simple example of a Markov chain 
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This section attempts to describe the Metropolis-Hasting algorithm is a generic 

method for approximating the posterior distribution of a model coefficient. 

��(|,� � ��W|,� is a joint posterior distribution because more than one predictor 

variables (i.e. coefficients	8, 90, … , 94) need to be approximated simultaneously. 

In this case, an iteration of the Metropolis-Hasting sampling is a complete cycle 

through every unknown parameter	(�b� � c8�b�, 90
�b�, … , 94

�b�d. This sampler works 

by randomly proposing a new value 	(∗ . If ��(∗|,� f �`(�b�g,a then the next 

value in the chain becomes the proposed value 	(�bh0� � 	(∗ . If ��(∗|,� V
�`(�b�g,a then it seems 	(∗should not necessarily be included, the previous value 

is retained	(�bh0� � 	(�b�. The decision of including 	(∗ or not should be based on 

a comparison of 	��(∗|,� to	�`(�b�g,a. Fortunately, this comparison can be made 

using an acceptance ratio i even if  ��(|,� is not achievable:  

 

i � ��(∗|,�
��(�b�|,� � ��,|(∗���(∗�

��,|(�b����(�b�� 
 

(10) 

 

The way of creating proposal values 	(∗ is to add a random variable to the current 

values 	(�b�  using a proposal density 	j`(∗g(�b�a . Usually 	k	 can be taken 

considered as a symmetric attribute from a uniform distribution or a standard 

normal distribution. So that proposals closer to the current value are more likely. 

In practice, given 	(�b� , the Metropolis-Hasting algorithm generates a value 

	(�bh0�as follows (Hoff, 2009): 

 

1. Sample 	(∗~j`(∗g(�b�a; 

2. Compute the acceptance ratio 

 

i � ��(∗|,�
��(�b�|,� � ��,|(∗���(∗�

��,|(�b����(�b�� m j`(�b�g(∗a
j�(∗|(�b�� 

 

3. Let  n~uniform;0,1=, and setting 

 

(�bh0� � v 	(∗, if	n V i
(�b�, otherwise 

 

 

 

 

(11) 

 

For simulating the posterior probability of each coefficient in equation (5), 

��,|(� in equation (11) is the log-likelihood function of the probit model: 

 

ln {�(� � |`Z ln Φ�)′(� � �1  Z� ln`1  Φ�)′(�aa 
 

(12) 

 

where y is the observed data of experiment. In step 2, the prior distribution is 

chosen from a multivariate normal distribution	��(�~~��, ��, where covariance 

matrix	� of multiple coefficients can be approximated by an inverse of the Hessian 

matrix 	� � �C0	 (Yuen, 2010). Quasi-Newton methods are normally used to 

produce the inverse Hessian 	∆9 � �C0 ∙ ?′�9� . If the proposal density k  is 

symmetric (i.e. a multivariate normal), then i in equation (11) is simplified to a 

likelihood ratio.  
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Figure 8 Markov chain samples using Metropolis-Hastings sampling for 90 

 

An example of Metropolis-Hasting samplings for 90 is shown in Figure 8. The 

likelihood of ��90	│Z� is calculated complying with equation (12). The first 1000 

Markov chain samples for 90 are illustrated. Evidently the starting value 	90
��� � 0 

at the top plot is far from a reasonable estimate, the lack of knowledge about 	90
���

 

leads to such poor estimates at initial steps. The early estimates are not allowed for 

any inference for 90 and usually to be defined as burn-in period. For example the 

bottom plot discards the first 500 iterations and shows an immediate convergence 

of the simulation to the correct value for 90 graphically. 
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4.3.2 Estimation of Uncertainty Bounds 
 

The previous section make obvious that the Markov chain samples provide the 

complete distributions when the chains have correctly converged, thus making 

inferences of unknown parameters are feasible. Figure 9 shows a histogram of 90 

using Metropolis-Hastings sampling. The first 1000 samples are shown in Figure 

8. This histogram is based on discarding the first 500 samples (burn-in) and using 

a sample size of 10,000. A bell-shaped distribution is displayed and it is possible 

that the posterior distribution about 90 is approximately Normal. Hence, various 

summary of 90 can be computed. For example, the mean of 90is estimated using 

the mean of the sampled value, as given in equation (13). 
 

9 � 1
� | 9�b�

�

b�0
 

 

(13) 

 

 
 

Figure 9 Histograms of Markov chain samples using Metropolis-Hastings 

sampling for  90 
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variables. So once the empirical distribution of each model coefficient can be 

simulated by Markov chain samples, the corresponding posterior probability  

��� � 1|(, )�  will also be obtained. Therefore it will be straightforward to 

quantify the uncertainty boundary through the quantile estimation.  

 

Based on a detailed account of algorithms behind Bayesian and MCMC methods, 

the next section elaborates on an application of Bayesian methods in the maritime 

industry addressing ship survivability assessment after damage. The given case 

study presents an example of Bayesian analysis applied for generalized linear 

model with a probit link function.  
 

4.4 Bayesian Analyses for a Binary Regression Model 
 

4.4.1 An Example of Ship Survivability Prediction 
 

As Bayesian methods enable plausible inferences based on the assembled data of 

experiments, it is reasonable to be deployed for predicting the stochastic ship 

behaviour follow flooding with relevant data. In the knowledge that the interested 

phenomenon is physically influenced by a list of variables as stressed previously 

(e.g. loading condition, damage characteristics, sea environment), the following 

example will focus on training predictive model (i.e. the probability of capsize) by 

using only a single influential variable (i.e. sea environment measured by 

Significant Wave Height 	�� ) to illustrate the applicability of the proposed 

approach. 

 

On the basis of the identified Probit model, the question at hand can be easily 

formulated as shown in equation (14), in which a series of predictor variables 

�) � /0, . . . /4� can be included simultaneously. For the time being, only a single 

variable	�� is considered for model training. Hence, ) � / � ��.  

 

                   ��� � 30$%&, � � �	
@%��|(, )� � Φ�8 � ()�   (14) 

 

The next immediate task is to collect evidence so that Bayesian methods can be 

deployed for estimating the proposed model. The data collected from physical 

model experiments under Task 4.1, (Rask, 2010), is used and tabulated in Table 1. 

In total, there are 83 measured records. Having the data, the target distribution 

��(|,� is approximated using 10,000 iterations with a burn-in sample size of 500. 

Commonly the M-H sampling algorithm is considered as convergence if the 

acceptance rate stands between 20 and 50%. In this case, (∗ is accepted as (�bh0� 
for 28.5% of all the iterations. (i.e. 2996 times out of total 10500 iterations)  

 

Table 1 M/V Estonia, experimental test matrix, t=30 minutes 

 

Theoretical Hs No. of Capsize No. of tests Rate of Capsize 

2 0 3 0 

2.5 2 20 0.10 

2.6 13 20 0.65 

2.75 16 20 0.80 

3 20 20 1 
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The estimated coefficients are summarized in Table 2. The value of 9 is positive 

indicating a positive correlation between the probability for the ship to capsize and 

the significant wave height. Figure 10 plots the MCMC approximations to the 

marginal posterior densities of the two model coefficients 8  and 	9 . The 99% 

confidence interval of each parameter is based on 0.5% and 99.5% posterior 

quantiles of	��(|,�. 

 

Table 2 Fitting a ship response model (after flooding) to the experimental data 

 

Parameter Mean SD 99% posterior interval 

α -21.63 4.631 -34.833, -11.228 

β for Hs 8.295 1.769 4.334, 13.368 

 

 
 

Figure 10 MCMC approximations to the posterior distributions of 8 and 9 
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With the simulated distribution of the model coefficients 	��(|,� , the 

corresponding posterior probability of the output variable, probability of capsize 

��� � �	
|(, )�  can be estimated easily for a given sea state. A continuous 

distribution of the rate of capsizing is attained, as shown in Figure 11, if a range of 

sea states are considered. It is clear that the depicted Bayesian distribution, 

cooperated with 99% confidence interval have a good agreement with the 

experimental results.  

 

Despite the fact that the estimated Probit model includes only a single variable , 

the estimated probit model using Bayesian techniques still can be regarded as a 

promising alternative for fast predicting ship survivability. Currently the data 

applied for model training is based on tailored experiments for M/V Estonia only. 

In order to avoid a common problem that the developed model may only represent 

the best ‘fit’ to specific damage situations, additional experimental data measured 

in other important projects (i.e. HARDER, SAFEDOR) must be taken into 

account for database expansion. All of the estimations in Chapter 5 are in 

accordance with the refined data. Moreover, the next chapter intends to include 

more influencing variables for model selection. After comparing the results of the 

new model to other traditional methods, it can be seen that Bayesian probabilistic 

methods are ideal for applications in the maritime field, for proposing the 

numerous types of models and quantifying the uncertainties associated with the 

investigated problems.  

 

 
 

Figure 11 M/V Estonia, posterior distribution of rate of capsizing simulated by 

Bayesian techniques (Applying tailored experimental data for model training) 
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4.4.2 Ship Survival Time Assessment 
 

As it is shown in Figure 11, the estimated model can be deployed to predict the 

rate of capsizing for a specific flooding case. The rate of changes has a sigmoid 

shape, which varies with the encountered sea states. Nevertheless, it is important 

to realise that such survivability prediction is made based on the experiment 

period lasting 30 minutes. Hence, it is necessary to set up the relationship between 

the time and the consequent survivability for given damage conditions. 

 

Regarding this, the theory of the Bernoulli trial process is applicable (Jasionowski, 

2006). Suppose that the probability of capsizing 
.	 is constant for a given 

damage	�, consequently, the probability that the n
th

 test is a case of “capsize” can 

be measured by equation (15). The number of trials can be determined from	& �
B���

B��2��b4 , where ����	(in minutes) is the cumulative time needed for a damaged 

ship to capsize. Thus the probability of capsizing within ���� can be evaluated.  

 

�`����g��	, �a � 1  `1  
.a4 � 1  `1  
.a
B���B�  

  

(15) 

 

As a result, the matching probability density function of “time to capsize” can 

be formulated as shown in equation (16). 

 

:	`����g��	, �a � ��B���
�����

�  ln`1  
.a ∙ `1  
.a
B���B� ∙ ��C0 

 

(16) 

 

Concerning the experimental results as tabulated in Table 1, the case at �� �
2.6 m where 	
. � 0.65  measured within 30 minutes, has been select to 

demonstrate how the ship survivability assessment can be extended to any time 

period. Following 20 independent survivability tests, the histogram of time to 

capsize is plotted in Figure 12. Proceed from a comparison, probability density 

function based on equation (16) for the same damage situation is also considered, 

where 	
._����� � 0.477 is estimated through Bayesian methods in section 4.4.1.  

 

It should be pointed out that no initial transient flooding has been modelled during 

the experiments. The wave tests start from an equilibrium stage after the damaged 

compartments are flooded. Thus a reasonable deviation can be found regarding the 

density distributions in the first 600s. Subsequently, corresponding cumulative 

distributions �`����g��a  are illustrated in Figure 12, where the CDF curve 

provides the probability of the cumulative amount of time that it takes the ship 

sink/capsize. Meanwhile, Bayesian estimates as a 99% confidence interval of 

�`����g��a present a good way to quantify the uncertainties associated with the 

measurements.  

 

In the same way, Figure 13 and Figure 14 show the cases when the experiments 

performed at �� � 2.75m with 	
. � 0.8  and �� � 3.0m with 		
. � 1 . Apart 

from that, the computed rates 		
._�����	 are 0.878	and	0.999 through Bayesian 

methods. It can be seen that all of measured probabilities of capsizing within 30 

minutes lie within the assigned 99% uncertainty bounds. 
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Figure 12 M/V Estonia, Histogram of probability density function of time to 

capsizing given the damage case tested at Hs =2.6m with 
. � 0.65. 
Comparison with Bayesian density; Cumulative probability of time to 

capsize 	`�����a . Comparison with Bayesian CDF. The evaluation time of 

experiment = 30 minutes. 
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Figure 13 M/V Estonia, Histogram of probability density function of time to 

capsizing given the damage case tested at Hs =2.75m with 
. � 0.8. 
Comparison with Bayesian density; Cumulative probability of time to 

capsize 	`�����a . Comparison with Bayesian CDF. The evaluation time of 

experiment = 30 minutes. 
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Figure 14 M/V Estonia, Histogram of probability density function of time to 

capsizing given the damage case tested at Hs =3.0m with 
. � 1. Comparison 

with Bayesian density; Cumulative probability of time to capsize 	`�����a . 

Comparison with Bayesian CDF. The evaluation time of experiment = 30 

minutes. 
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5. MODEL APPLICATION 
 

With the explained Probit model and Bayesian inference techniques, this chapter 

details the application of the proposed new methodology for making inference on ship 

survivability following flooding. The application procedure consists of two main 

steps: 

 

• Model selection starts with an identification of the dominant variables to be 

included in the proposed models. And then based on the collected experimental 

data, different predictive models are estimated by employing the techniques as 

described in Chapter 3 and 4. It should be noted that the considered predictor 

variables should be detailed enough to capture the ship behaviour from the 

instance of flooding up to the ultimate capsize/sink (if it occurs). Furthermore, it is 

also important to keep the list compact so as to maintain a well balance between 

the number of key variables influencing ship survivability and the quality of the 

predictability of the model. 

 

• Validation of the models proposed in the above step must be performed. The 

relevant studies are discussed in two ways: i) at the damage scenario level, the 

estimated results are compared with both the experiments and conventional 

methods (i.e. damage stability clauses in SOLAS 2009); ii) at a ship level, the 

established model is applied to predict survivability of new ships, which are 

subjected to possible different damage scenarios. In this case, it is noteworthy that 

these flooding cases are likely to be different from the cases used for training the 

model. The desired goal in this step is to have a model can be used for effectively 

and scientifically predicting survivability of the RoPax fleet as a whole.  

 

5.1 Model Selection 
 

5.1.1 Dominant Variables Identification 
 

Ship survivability is affected by a large amount of physical variables (e.g. ship 

internal watertight arrangements, loading conditions, the hull damage 

characteristics, and external sea environment). In this context, sensitivity analysis 

is deemed desirable to assess the significance of each variable so that those 

relatively more important variables can be identified scientifically. Nevertheless, 

one need to appreciate that the amount of effort required (in terms of time and 

resources) is tremendous. On the other hand, it is necessary to understand that the 

ship survivability is a subject that has been studied in a great detail since the past 

century. Hence, it is deemed appropriate to make use of the existing resources and 

knowledge.  

 

On the basis of the research work carried out in HARDER and the subsequent 

updated probabilistic rules in SOLAS concerning ship damage stability, it is noted 

that GZ particulars are recognised as the bridge to link the various physical 

variables (e.g. loading condition, subdivision arrangement, and damage 

characteristic) to the survivability. This is indeed an important step forward to 

address ship damaged stability probabilistically. Nevertheless, the existing 

formulations also have the following challenges need to be further investigated: 
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• The importance of sea environment to the behaviour of damaged ships is not 

explicitly included. This raises the concern over the quality and realistically 

of the prediction using the current formulations. 

• For the purpose of accommodating the probabilistic assessment of the 

dynamic ship survivability at operational stage, the computational effort 

needed for assessing the GZ particulars of the considered flooding cases is 

tremendous. Hence, it is not straightforward to employ these formulations for 

decision support during operation, particularly under emergency situations.   

 

In response to the aforementioned challenges, a series of key variables divided 

into three categories is identified in Table 3. All of them are separated to configure 

two different predictive models. The following sections will go into detail about 

the estimation and validation of these proposed models. 

 

Table 3 Predictor variables for model training 

 

Category Variable Model 

Sea environment �� 1 & 2 

Initial loading 
��/��� 2 

�/� 2 

Damage 

attributes 

GZmax 1 

Range 1 

���  2 

!"/!� 2 

 

5.1.2 Data Collection 
 

Having the identified variables, it is important to collect pertinent data. In this 

respect, it is noted that the size of the data set is always restricted by both 

allocated time and budget for each study. For the sake of statistical inference, it is 

generally agreed that the sample size has direct impact on the quality of the 

outcome. With smaller samples, using statistical techniques may easily lead to 

either 1) too little statistical power for the test to realistically identify significant 

results, or 2) the results are too “over fitting” to the data, however they are 

artificially good because they fit the sample but not enough to provide generalised  

information (Hair, 2009). Hence, this study attempts to collect as much reliable 

data as possible so as to assure the quality of the trained model. 

 

Fortunately, a series of benchmarking experiments (in accordance with Directive 

2003/25/EC (EC, 2003)) on survivability assessment of RoPax vessels in the 

projects partially funded by the European Commission (i.e. HARDER (Tuzcu and 

Tagg, 2001), SAFEDOR (Chen et al., 2009), FLOODSTAND) and more recently 

by the European Maritime Safety Agency (EMSA) has been made available. In 

total, this represents 756 runs of the repetitive wave test on a number of 

specifically developed scaled ship models.   
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5.1.3 Model Estimation using Variables including GZ particulars 
 

Based on the current formula of computing survival factor in SOLAS 2009, the 

variables of damage GZ particulars are the key means to link ship survivability to 

those influential variables (e.g. loading conditions, ship subdivision). 

 

In order to keep consistency of the assessment, GZ properties are included in the 

model at this time. Moreover, the significant sea state also plays an important role. 

Hence, concerning a particular damage case, three governing variables �) �
/0, /1, /2�	that consist of the damage GZmax, the related Range in EQ, and the 

significant sea state (Hs) are considered as the prime parameters for model 

estimation. In such case, four model coefficients must be estimated and each 

target distribution ��(|,� is approximated by Metropolis-Hastings samples. All 

of assembled data (756 tests), as summarised in Table 4, are utilised for model 

training. The MCMC method simulates 10,000 times with the burn-in of the first 

500 samples.	(∗ is accepted as (�bh0� for 37.1% of the iterations, which satisfies 

the required acceptance rate.  

 

Table 4 Assembled experimental data for model training  

(with damage GZ particulars) 

 

Project 
No. of 

tests 
Damage case 

Measured 

Hs  

Static damage stability 

GZmax Range 

HARDER 425 

PRR01_case 2 

1.5 - 6.25 

0.30 15.81 

PRR01_case 3 0.19 16.31 

PRR01_case 5 0.33 18.79 

PRR01_case 6 0.20 13.93 

PRR01_case 7 0.10 9.85 

PRR01_case 9 0.32 16.62 

PRR01_case15 0.32 17.62 

PRR01_case16 0.17 12.57 

PRR01_case17 0.27 13.98 

PRR01_case18 0.16 10.15 

PRR01_case21 0.53 23.88 

PRR01_case23 0.38 19.24 

PRR01_case24 0.26 15.64 

PRR01_case25 0.14 11 

PRR01_case26 0.41 20.4 

PRR01_case27 0.28 16 
SAFEDOR 248 Pentalina 1.5 - 2.5 0.20 25 

FLOOSTAND 83 M/V Estonia 2.0 - 3.0 0.09 9.545 

 

It is noteworthy that 83 repetitive wave tests for a RoPax model of M/V Estonia 

(in scale 1:40) have been undertaken in Task4.1. A port-side damage (DS/P6-

7.1.0) was modelled as shown in Figure 15. Some correlated hydrostatics and 

stability information is tabulated in Table 5. Furthermore, Figure 16 gives the 

computed damaged GZ curve.  
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Figure 15 M/V Estonia, DS/P6-7.1.0 (2-compartment damage) 

 

Table 5 M/V Estonia, hydrostatics and stability information 

 

Damage 

Case 

Initial condition Damaged stability 

PER T Trim KG GZmax Range Heel 

DS/P6-7.1.0 0.95 5.39 m 
0.435m 

by aft 
10.62 m 0.09m 

9.545 

deg 

1.95 deg
 

to port 

 

 
 

Figure 16 M/V Estonia, Damage GZ curve, GZmax=0.09m where Range 

=9.545deg 
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The subsequently simulated model coefficients are summarized in Table 6. The 

MCMC approximations to the posterior densities ��(|,� for all the coefficients 
�8, 90, 91, 92� are depicted graphically in Figure 17. These distributions seem to 

interpret all these three variables have much influence on the ship survivability 

following flooding, since the 99% quantile-based posterior intervals for all these 

coefficients do not contain zero. The estimated magnitudes 90 and 92 are positive. 

In contrast, the negative sign of 	91 indicates that GZmax is inversely proportional 

to the rate of ship capsizing, which agrees well with the phenomenon observed in 

reality. 

 

Table 6 Summary of Metropolis-Hastings samples of model coefficients 

(with damage GZ particulars) 

 

Parameter Mean SD 99% posterior interval 

α (interception) -3.8844 0.2182 -4.4896, -3.3411 

β1 for Hs 1.3655 0.0551 1.2267, 1.5268 

β2 for GZmax -14.3076 0.7115 -16.1117, -12.4717 

β3 for Range 0.1565 0.0121 0.1247, 0.1887 

 

 
 

Figure 17 MCMC approximations to posterior distributions of model 

coefficients (with damage GZ particulars) 
 

-4.5 -4.0 -3.5

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

α_interception

p
(α

|y
)

1.1 1.2 1.3 1.4 1.5 1.6

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

β1_Hs

p
(β

1
|y

)

-17 -16 -15 -14 -13 -12

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

β2_GZmax

p
(β

2
|y

)

0.10 0.12 0.14 0.16 0.18 0.20

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

β3_Range

p
(β

3
|y

)



FLOODSTAND Uncertainty bounds on time to capsize models  02.02.2012 

FP7-RTD-218532 

D4.5    Page 32

5.1.4 Model Estimation using Variables excluding GZ particulars 
 

As it is noted in the traditional approach for addressing ship survivability 

assessment, damage GZ particulars have been widely used as the principle 

parameters for estimation. However, during the real operation, the response time 

for a damaged ship in a seaway is very limited. This demands a really fast 

assessment of ship survivability for decision support in emergency situations. In 

reality, the computation of damage stability is very time-consuming as it requires 

information of ship subdivision arrangement, and the status of openings which 

must be linked with the instantaneous of the statues of watertight doors on board. 

Such computational defect may constrain the applicability of damage GZ 

particulars in practical.  

 

In such circumstance, a possible way out is to reformulate the predictive model 

with other key variables instead of GZmax and Range. Some easy accessible 

parameters at operational stage are more preferable. In order to strive for 

regression model parsimony, heeling angle at the damaged equilibrium and the 

extent of flooding are selected for describing the damage attributes. Beyond this 

operational information, initial conditions at the design stage must be considered, 

such as the design draught and the centre of gravity KG of the damaged ship.  

 

Attempting to maximize the utility of the limited data set for model training, non-

dimensional measurement of the aforementioned variables are adopted for 

processing the data analysis regardless the size of the ship. In this way, the ratios 

between draught and depth, ��  and 	��� , damage length and the subdivision 

length of the ship are considered respectively. The pertinent experiment data is 

tabulated in Table 7. 
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Table 7 Assembled experimental data for model training  

(without damage GZ particulars) 

 

Damage case 
Measured 

Hs  

Intact Condition Damage  Condition 

KG/KMT T/D Heel Ld/Ls 

PRR01_case 2 

1.5 - 6.25 

0.8306 0.6944 3.17 0.0466 

PRR01_case 3 0.8669 0.6944 4.07 0.0466 

PRR01_case 5 0.7962 0.6944 2.54 0.0466 

PRR01_case 6 0.8413 0.6944 3.23 0.0466 

PRR01_case 7 0.8782 0.6944 4.14 0.0466 

PRR01_case 9 0.7747 0.6944 2.36 0.0466 

PRR01_case15 0.8483 0.6389 3.72 0.0466 

PRR01_case16 0.8898 0.6389 5.32 0.0466 

PRR01_case17 0.7990 0.7500 2.59 0.0466 

PRR01_case18 0.8443 0.7500 3.34 0.0466 

PRR01_case21 0.7860 0.6944 1.76 0.0466 

PRR01_case23 0.8306 0.6944 2.25 0.0466 

PRR01_case24 0.8669 0.6944 2.89 0.0466 

PRR01_case25 0.9093 0.6944 4.33 0.0466 

PRR01_case26 0.7962 0.6944 1.65 0.0466 

PRR01_case27 0.8413 0.6944 2.08 0.0466 

Pentalina 1.5 - 2.5 0.8533 0.7860 1.00 0.0717 

M/V Estonia 2.0 - 3.0 0.8949 0.7046 1.95 0.0518 

 

On the basis of the applied predictive model	��� � �	
@%��|(, )� � Φ�8 � ()�, 

five influencing variables ) have been fitted in, which comprise sea environment 

Hs, initial KG/KMT, T/D, damaged attributes Heel in EQ and Ld/Ls. In current 

study, all these input variables are assumed independent and thus there is no 

interaction form	`/b ∙ /�a in the model. By using the same MCMC algorithm for 

approximating the target posterior distribution of each regressor index	��(|,�, a 

summary of simulated model coefficients are listed in Table 8. The Metropolis-

Hastings acceptance rate is 26.7% for this case, which satisfies the requirement.  

 

As it is shown in Figure 18, the variations (within 99% quantile-based posterior 

interval) in the obtained coefficients do not cover zero, which implies the 

significance of the chosen variables to assess the response of damaged ships. 

Furthermore, as the estimated ( are positive, they indicate positive correlations. 

This implies: 

 

• Considering a ship with a specific draught, the larger KG, the poorer damage 

stability the ship has.  

• As the ratio between draught and depth provides information on residual 

freeboard at design stage, the higher ratio leads to the smaller amount of 

freeboard left. Thus, it presents a higher rate of losses.  

• Similarly, a higher ratio between damage length and subdivision length means 

the larger size of the damage and the lower survivability the ship has.  
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Table 8 Summary of Metropolis-Hastings samples of model coefficients 

 (without damage GZ particulars) 

 

Parameter Mean SD 99% posterior interval 

α (interception) -57.2016 2.9094 -65.3078, -50.2090 

β1 for Hs 1.6203 0.0717 1.4390, 1.8264 

β2 for KG/KMT 20.7519 1.8823 15.9061, 25.7977 

β3 for T/D 42.8016 2.7077 36.3450, 49.9021 

β4 for Heel 0.4126 0.0742 0.2158, 0.6193 

β5 for Ld/Ls 54.6001 12.3074 26.4065, 90.7295 

 

 
 

Figure 18 MCMC approximations to posterior distributions of model 

coefficients (without damage GZ particulars) 
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5.2 Model Validation  
 

The two aforementioned models have been selected for comparison with the 

benchmark data and the conventional methods (as entailed in SOLAS2009). In the 

following context, the model allowing for damage GZ particulars as input variables is 

defined as Model 1. Model 2 is to denote the estimated model using other accessible 

operational parameters (see Table 3). A detailed discussion of comparison findings is 

given later in each part. 

 

5.2.1 Result Comparison with Experiments 
 

In this section, the estimated models are put forward to make predictions, which 

will be compared with the findings of experiments data. The investigation is 

performed in two aspects: survivability prediction and ship survival time 

assessment. 

 

5.2.1.1     Model fitted with damage GZ particulars (Model 1) 
 

With the estimated Model 1, in which the coefficients and their variations are 

tabulated in Table 6, the probability distributions of the model coefficients ��(|,� 

are known. As a result, the rate of capsizing 
.�� � �	
|(, )� can be computed 

directly once the values of predictor variables ) are assigned. In the flooding case 

considered for the “M/V Estonia” model, the survivability prediction is depicted 

as Figure 19, where the inputs are:	) � ���, 0.09$, 9.545A�:�. 
 

 
Figure 19 M/V Estonia, posterior distribution of rate of capsizing 
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Comparing with the experimental data, it can be seen from Figure 19 that Model 1 

underestimates the ship survivability when 		H¢ V 2.6$ , and vice versa. The 

discrepancy can be interpreted in two ways.  
 

• Firstly, the data set for model training involves data from other benchmarking 

experiments assembled to date (see Table 4). Hence, the current estimation for 

this particulars damage case can be best described as a compromise among all 

the observations to depict the survivability of RoPax vessels in general. In this 

context, it is important to point out that the expansion of the training data set is 

essential to make the developed model that is capable of describing the 

population (world fleet) as a whole.  

• Secondly, the values of the input parameters (i.e. damage GZ particulars) are 

difficult to be obtained from experiments. In this case, other accessible 

operation parameters are preferred for model estimation for the sake of a fast 

prediction. Hence, the next section provides a demonstration on the prediction 

using other input variables.  
 

Other than the tested damage case on the model M/V Estonia, the remaining 

observations as shown in Table 4 can be also given parallel estimations. At this 

time, the mean critical sea state ��@�£bB� is deployed as an indicator to compare 

the survivability between the real measurements and the predictions of the models. 

To define	�@�£bB, it stands for the significant wave height at which the vessel has 

50% rate of capsizing within � � 30 minutes following flooding.  

 

According to Figure 19, the critical sea state �@�£bB � 2.69  can be easily 

measured once the probability distribution of ship capsizing 
.�� � �	
|(, )�	is 

plotted against the encountered sea states. Through Figure 20, it can be observed 

that the predicted critical sea states are very much comparable with that of the 

situations identified during the experiments as almost half out of the total 18 cases 

are blow the diagonal line. Meanwhile, the upper confidence bound (e.g. 99%) of 

each estimated mean �@�£bB  is also assigned (i.e. denoted by red dots) 

Nevertheless, it is notable that the tested “Estonia” case, as indicated in Figure 19, 

overestimates the survivability in higher sea states. Hence, it is difficult for the 

model to produce conservative estimations comparing to the actual measurements. 
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Figure 20 Comparison of mean critical sea states `
. � 0.5abetween Model 1 

prediction and the experimental measurement 

 

As far as the survival time assessment is concerned, the principle of generating a 

cumulative distribution of the probability for “time to capsize” is based on a 

Bernoulli trial process (See section 4.4.2). As the predicted rates of capsizing  


.�� � �	
|9, <�  are less than the physical records when 		H¢ E 2.6m , it is 

expected the estimated ship vulnerability to flooding to be smaller than the 

measured values within a given time interval (e.g. 30 minutes). Figure 21 exhibits 

such described phenomenon. 
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(c) 

 

Figure 21 M/V Estonia, Cumulative probability of time to capsize	`�����g��a. 

The evaluation time of experiment = 30 minutes. 

a) Hs =2.6m with 
. � 0.65 and 		
._����� � 0.449 

b) Hs =2.75m with 
. � 0.8 and 		
._����� � 0.530 

c) Hs =3.0m with 
. � 1 and 		
._����� � 0.662 
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5.2.1.2     Model fitted without damage GZ particulars (Model 2) 
 

In terms of Model 2, the sampled weights of each variable have been summarized 

in Table 8. Similar to the examination for Model 1, a conditional probability 

distribution of 
.�� � �	
|(, )� given	��(|,� and ) can be generated. Model 2 

differs from Model 1 in that it takes operational information of heel angle and 

damage extent into account. Both variables are easier to be measured than damage 

GZ particulars. 

 

Referring to the deliverable of Task 4.1, the average of recorded heel angle is 4.25 

degree towards the port during the static measurement before the wave test. 

Moreover, the damage was caused to the model in accordance with SOLAS 

damage opening standard, which requests the damage length is 0.03L+3m (i.e. 

equals 7.12m for this case). So the input variables of Model 2 can be fixed by also 

using other intact information 	) � ���, 0.9088, 0.7046, 4.25A�:, 0.0518	� . 

Consequently, it is revealed that the estimated survivability of Model 2 achieves a 

better fit with experimental data than that of Model 1, as illustrated in Figure 22. 

 

 
 

Figure 22 M/V Estonia, posterior distribution of rate of capsizing 
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Figure 23 Comparison of mean critical sea states `
. � 0.5abetween Model 2 

prediction and the experimental measurement 

 

In light of the revealed relationship in Figure 23, it seems the predicted critical sea 
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Figure 20, results of Model 2 under-predict more cases than Model 1 when 
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the actual measurement. As a result, considering the survival time assessment, the 

predicted vulnerability for this case is not underestimated any more. It is visible 

that the computed probability of time to capsize at higher sea states is more close 

to the real observation as depicted in Figure 24. 
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(c) 

 

Figure 24 M/V Estonia, Cumulative probability of time to capsize	`�����g��a. 

The evaluation time of experiment = 30 minutes. 

a) Hs =2.6m with 
. � 0.65 and 		
._����� � 0.670 

b) Hs =2.75m with 
. � 0.8 and 		
._����� � 0.753 

c) Hs =3.0m with 
. � 0.1 and 		
._����� � 0.862 

 

On the basis of the comparison results with experimental data, it can be seen that 

the selection of model variables have significant impact on the prediction 

outcome. Despite the damage GZ curve has long been regarded as the means for 

measuring residual stability, the computational complexity is an inevitable 

obstacle to be applied at operational stage for decision support in emergencies. As 

an alternative, Model 2 is trained with other more accessible operational variables. 

The comparisons as presented from Figure 22 to Figure 24, indicates that Model 2 

can be also a promising solution. Regarding the tested case to the “Estonia” 

model, Model 2 has better predictive performance than Model 1. 
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5.2.2 Result Comparison with SOLAS2009 
 

In order to gain better understanding of the predictive performance of the trained 

models, this section attempts to compare the output differences between the 

obtained model and the standard calculation in SOLAS 2009.The critical sea state 

��@�£bB� is still deployed as the indicator of the prediction performance of ship 

survivability. 

 

According to the recent survival “s” factor as developed in project HARDER 

(Tuzcu and Rusaas, 2003), it accounts for the probability of survival of a damaged 

vessel after flooding the compartment or group of compartments under 

consideration. The formula is given as equation (17)  

 

@¤¥¦§¨,¥ � � ∙ O�����
0.12 ∙  	&:�

16 S
0
©
 

  

(17) 

  

Where GZmax is not to be taken as more than 0.12m and Range is not greater 

than 16 degrees. 
 

Such a relationship has been derived from two correlations as shown in Equation 

(18) and (19). The former represents the relationship between GZ properties and 

the critical sea state 	�@�£bB , which are established through physical model 

experiments. The latter gives the cumulative probability distribution �ª��«¬¬®«¯for 

wave height recorded at the instant of collision (Heimvik, 2001). 

  

�@�£bB � 4 ∙ °�����
0.12 ∙  	&:�

16 ± 
  

(18) 

  

�ª��«¬¬®«¯ � �C��.²³´².µ∙¶®�«¬¬®«¯  (19) 

 

Based on the correlations presented above, it appears that the current formula for 

�@�£bB has a direct impact on the assigned probability “s”. �@�£bB is an intuitive 

measure to describe the ability of the damaged ship to withstand the encountered 

sea states. Thus comparisons of the computed �@�£bB between both the established 

models and that from equation (18) are performed. 
  

5.2.2.1     Model fitted with damage GZ particulars (Model 1) 
 

It can been seen in Figure 25, the distribution of the points indicates that Model 1 

might overestimate the survival sea state �@�£bB for half of the cases, particularly 

for the chosen damage case on the “Estonia” model. In the meantime, it is 

important to notice that equation (18) is valid only for significant wave heights of 

less than 4 meters, as it is explicitly implied in equation (19). Hence, the points at 

the upper right corner indicate a greater survivability of all these cases have been 

estimated by both methods. 

 
 

 



FLOODSTAND Uncertainty bounds on time to capsize models  02.02.2012 

FP7-RTD-218532 

D4.5    Page 45

 

Figure 25 Comparison of theoretical critical sea states `
. � 0.5a	between 

Model 1 and SOLAS2009 
 

 

5.2.2.2     Model fitted without damage GZ particulars (Model 2) 
 

A similar comparison can be performed between Model 2 and SOLAS estimations 

concerning	�@�£bB. As shown in Figure 26, it demonstrates a poor correlation in 

four cases including the “Estonia” case, where Model 2 overestimates the survival 

sea state. On this basis, it is difficult to draw a definite conclusion. Nevertheless, a 

comparison of the theoretical estimation (through SOLAS) and experimentally 

derived	Hs·¸¥¹  provides some interesting insight. As depicted in Figure 27, the 

actual survivability is not underestimated by the current formulations in Equation 

(18) (adopted in regulation 7-2.3 of IMO MSC.216 (82)) for some of the 

experimental cases. Hence, such evidence suggests that the prediction 

performance of Model 2 is comparable with the results of model tests as described 

in Figure 23. 
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Figure 26 Comparison of theoretical critical sea states `
. � 0.5a	between 

Model 2 and SOLAS2009 

 

 

Figure 27 Comparison of critical sea states `
. � 0.5a	between experimental 

measurement and SOLAS2009  
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5.3 Model Testing with HSVA data 
 

As it is described previously, the generalizability of the proposed models should be 

examined with some new damage cases, which are not involved in model training. On 

this basis, the recent physical experiments undertaken by HSVA in a research study 

funded by the EMSA (Project No: EMSA/OP/09/2008) are put forward for further 

investigation. Particular attention should be paid to Model 2 as it is more desirable to 

have a survivability assessment model with more accessible variables. 

 

Two RoPax vessels were designed according to the new probabilistic SOLAS 2009 

damage stability standard (Ludwig, 2009a) (Ludwig, 2009b). The physical model tests 

have been performed in accordance with the Directive 2003/25/EC. Table 9 and 

Figure 28 outline the information of the two tested damage cases which are used for 

examining Model 2. 

 

Table 9 Assembled experimental data for model testing  

 

Damage case 
Measured 

Hs [m]  

Intact Condition Damage  Condition 

KG/KMT T/D Heel [deg] Ld/Ls 

EMSA1_D1 2.63 – 4.36 0.8259 0.7436 -1.0 0.065 

EMSA2_D1 3.73 - 4.99 0.7596 0.7391 2.5 0.04345 

 

 
 

(a) An 80m RoPax vessel 

 

 
 

(b) An 200m RoPax vessel 

 
Figure 28 Damage cases for physical model experiment 

(a) EMSA1_D1; (b) EMSA2_D1 



FLOODSTAND Uncertainty bounds on time to capsize models  02.02.2012 

FP7-RTD-218532 

D4.5    Page 48

Given values of predictor variables ) for each damage case, the correlated posterior 

distribution of rate of capsizing 
.�� � �	
|(, )�  can be evaluated by Model 2 

directly as shown in Figure 29. Investigations of the predicted survivability are 

justified through the mean critical sea state	�@�£bB	. 
 

For the first damage case (denoted as EMSA1_D1), the experimental measurement of  

�@�£bB stands at 3 meters. In contrast, Model 2 suggests the value to be 2.64 meters. 

Moreover, the result from equation (18) (implied by SOLAS2009) is 3.53 meters, 

which represents a significant overestimation. It seems the current formulations of 

�@�£bB cannot always produce a conservative prediction of ship survivability. 

 

Concerning the second damage case (EMSA2_D1), the observed survival sea state 

from experiments is more than 4 meters, which indicates a much higher survivability. 

In addition, both theoretical methods underestimate the survivability as the established 

survival sea state is below 4 meters. After testing the proposed model based on the 

two sampled cases, Model 2 can be regarded as a promising option for fast and 

accurate flooding predictions. Hence, the immediate question needs to be answered is 

how reliable the predicted survivability is by using the estimated model (i.e. Model 2). 

A reasonable explanation is a matter of uncertainty quantification of the response 

output	��� � 30$%&, � � �	
@%��|(, )�. 

 

As can be seen from Figure 20, 23, 25, 26 27, and 29, different assessment approaches 

present comparable but inconsistent estimations for the benchmarking tested cases. 

The deviations of the predictions need to be quantified in this case. An effective way 

is to ensure the proposed method provides more conservative predictions than others. 

This can be achieved by shifting the computed �@�£bB to the right hand side of the 

comparison diagram and below the diagonal line as shown in Figure 31. The 

following chapter emphasizes on the need for uncertainty quantification. 
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` 

(a) 

 

 
(b) 

Figure 29 EMSA1_D1 & EMSA2_D1, posterior distribution of rate of capsizing 

within the test duration �� � 30	minute 
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6. UNCERTAINTY QUANTIFICATION 
 

Because of the existed deviations among different assessment approaches, the 

ultimate goal is to define a proper method which can guarantee a comparable and 

relatively conservative estimation of the survivability for the majority of considered 

flooding cases. In this respect, a predictive model must be estimated. Attempting to 

achieve a balance between the prediction accuracy and the computational effort, a fast 

and accurate analytical model is more desirable. It now appears that most of the 

models used for dynamic survivability assessment are computer programs to better 

describe the physic phenomenon of ship capsizing, thus regression analysis can be 

applied to produce an analytical expression. In this way, based only on a few 

dominant input variables, the more complex computer model can be represented. 

Apart from getting a fast estimation, the uncertainty associated with the model 

response (output) can be calculated by propagating the uncertainty in the model inputs. 

General procedures of uncertainty analysis and sensitivity study constitute the core of 

this chapter for discussion. 

 

6.1 Probabilistic Uncertainty Analysis 

 
Typically uncertainty is classified into aleatory uncertainty and epistemic uncertainty 

(Hacking, 1975). Aleatory uncertainty is also called stochastic uncertainty which 

arises from natural variability. Epistemic uncertainty is defined as a knowledge-based 

uncertainty that represents the lack of knowledge. The most important distinction 

between these two types of uncertainty, at a practical level, is that the latter can be 

reduced by further study. With respect to the first principle models undertaking the 

performance-based survivability assessment, the inherent uncertainties in modelling 

are commonly divided into two major groups as the parameter uncertainty and the 

model uncertainty. For instance, the values of input parameters used in models may 

not be known accurately, and the parameters used in a model may be subjected to 

natural variability. On the other hand, the model uncertainty arises from the fact that 

any model inevitably is a simplification of the reality it is designed to represent, 

precise information is unavailable. As Katherine Laskey put in her lecture notes on 

probability in Artificial Intelligence: “All models are wrong, but some are useful” 

(Laskey, 1994). Being aware of these, the treatment of both the group of parameter 

and model uncertainty must be allowed for in reducing the uncertainties caused by 

vague input parameters and imperfect models. 

 

The general procedure of uncertainty analysis follows the propagation of the 

uncertainty through a model as shown in Figure 30. Probabilistic treatment of 

uncertainties is the most widely used in this process (Abrahamsson, 2002). In this 

example, the uncertainty in the model output variable G is derived according to the 

propagation of the uncertain variables f1, f2 and f3 through the model function (f1, f2, f3). 

The parameter uncertainty displayed at the top level is specified as probability density 

functions. The first subjected problem is to identify which parameter should be 

included in the model, and then to propose a measure for assigning the probability 

distribution of each model input to characterize its inherent variability. Moreover, 

with respect to the model uncertainty, the fairly common measure of treatment is to 

make use of several parallel models to enhance credibility in the results. 
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As with the schematically described uncertainty propagation, the uncertainty analysis 

is composed of two steps in this context. First, a predictive regression model has been 

identified in Chapter 3 which accepts the uncertainty transmission while the 

information of model inputs is available. Second, the probability distribution of each 

model input has been simulated through Bayesian inference as clarified in Chapter 4.  

 

 
 

Figure 30 Propagation of uncertainty through a model 

 

Since the underlying uncertainty of the model response (output) needs to be quantified, 

it implies uncertainty bounds of the obtained results have to be estimated on the basis 

of an acceptable level. By doing so, an acceptable lower bound of the survivability 

prediction can be regarded as a conservative solution. And therefore, the epistemic 

type of uncertainties seems to be mitigated mostly when considerable conservatism 

built into the construct of the conditional probability of ship capsizing in given 

environment.  

 

In the current study, additional attention is paid to the established Model 2 which uses 

more accessible operational parameters to characterize the instantaneous status of a 

ship subject to damage. Based on the discussions in the previous sections, quantifying 

uncertainty of the model response ����, � � �	
@%��│(,)� needs to be translated 

into measuring the variations of the component of the predictor variables 	). The 

impact of each input variable on the model response is reflected through the 

corresponding coefficient	( assessed. In this situation, it is noted that the variation in 

the model response given input variables is connected explicitly with the variation in 

the model coefficients. Thus, it is vital to understand that uncertainty quantification on 

the interested response variable should be sought through establishing uncertainty 

bounds associated with each model coefficient. 
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According to Bayesian inference methods and MCMC sampling algorithm, the target 

probability distributions of model coefficients ��(|,�  can be approximated. 

Following this, assigning uncertainty bounds of them is just a matter of quantile 

estimation as explained in section 4.3.2. The sampled mean value of ( can be utilized 

in equation (20) to derive a relationship for survivability prediction as given in 

equation (21). 

 

                   ����, � � �	
@%��│(, )� � Φ�9� � 90/0 � ⋯ � 94/4�   (20) 

 

Depending on the estimated results shown in Table 8, Model 2 is defined as 
        	
����, � � �	
│(, )� � Φ�57.2 � 1.62�� � 20.75 º»

º¼� � 42.8 �
½ � 0.41��� � 54.6 ¾¿

¾®
	�           

 

(21) 

 

Regarding the result comparisons in section 5.2, the uncertainty boundary of model 

response (rate of capsizing within 30 minutes) has been assigned by using the 99% 

posterior interval of all model coefficients. In theory, a conservative assessment can 

be achieved once the upper limit of the estimated ship vulnerability to flooding is 

obtained. However, in comparison to the experimentally and theoretically derived 

results, the proposed model might sometimes provide over-estimation of the actual 

survivability. Thus the degree of the confidence of the model response needs to be 

enhanced. In order to meet such requirements, the following issues concerning the 

model should be addressed: 

 

• The chosen predictor variables to represent the stochastic damage 

characteristics have to the dominant ones. 

• The variation of the values of predictor variables in the assembled data set 

should be flexible enough to reflect a wide range of possible damage scenarios  

 

On the basis of the foregoing, it appears that the proposed model needs to be further 

investigated and refined in the light of the underlying parameter uncertainty. 

Nevertheless, model selection still needs to restrict the regression model (Probit) to 

those critical influential variables as the quality of model may be reduced significant 

if too many variables are taken into account simultaneously. It is noted that the input 

variable !" !�⁄  in Model 2 may not be adequate enough to describe a specific hull 

breach, which is normally characterized by a group of variables including location x, 

length λ, penetration b and height h. Fortunately, the Bayesian inference technique 

combined with MCMC method is a robust manner for processing data analysis. In 

other words, modelling an acceptable relationship on the basis of the available data 

and knowledge still can be achieved. On the other hand, due to the benchmarking 

experiments are performed according to the Directive 2003/25/EC, thus the modelled 

flooding extent (up to two zone damage) is limited. Lacking of variations of the 

influential variables has a great effect on the assembled data set. As a result, the 

computed model coefficients may deviate from the actual situations.  In order to 

appreciate the input variable that results in the greatest impact on the model output, 

the last part of this chapter presents a particular sensitivity study of the rate of ship 

stability loss in given flooding cases with reference to the different input parameters 

pertaining to Model 2.  
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The difficulties raised above disclose that the established Model 2 inevitably subjects 

to the parameter uncertainty. For the purpose of approaching a conservative prediction 

while with high reliability, a practical way is to adjust the variation of model 

coefficients within their uncertainty bounds until an acceptable level of the 

survivability prediction is reached. 

 

With the simulated ��(|,� as outlined in Figure 18, it is reasonable to assume the 

posterior distribution about each 9b is approximately normal. In this case, tuning the 

percentile of model coefficients is a reasonable attempt to build up a conservative 

relationship for survivability assessment. As it is illustrated in Table 10, 55% 

posterior quantiles of ��(|,� have been selected to replace the present sample mean 

(50% quantile) for establishing a new relationship.  

 

Table 10 Adjustment of Model 2 coefficients 

 

Parameter Mean SD 0.55 quantile 

α (interception) -57.2016 2.9094 -56.836 

β1 for Hs 1.6203 0.0717 1.6293 

β2 for KG/KMT 20.7519 1.8823 20.9884 

β3 for T/D 42.8016 2.7077 43.1418 

β4 for Heel 0.4126 0.0742 0.4219 

β5 for Ld/Ls 54.6001 12.3074 56.1467 

 

By substituting the equation (21) with the adjusted model coefficients, the 

distributions of the rate of capsizing against the encountered sea states 


.�� � �	
|(, )� can be estimated for all those tested cases again. Subsequently, the 

correlated mean sea states 	�@�£bB  can be compared with the experimental and the 

theoretical values as shown in Figure 31. In contrast to Figure 23 and Figure 26, it is 

apparent that the obtained results are conservative following the slight tuning of the 

coefficients. 
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(a) 

 

 
(b) 

Figure 31 Comparisons of mean critical sea states after model adjustment 
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As presented before, the method of quantifying the inherent uncertainty in the 

established model itself is achievable. Once an acceptable conservative relationship is 

confirmed, from an operational point of view, an instantaneous prediction of the ship 

vulnerability to flooding against time can be addressed easily. Moreover, from a 

design point of view, assigning the probability of survival accommodates for all 

possible hull damages can be considered. The following part takes the RoPax vessel 

“M/V Estonia” as an example to demonstrate the trends. 

 

In the latest probabilistic damage stability standards of SOLAS 2009, the factor “s” is 

defined as a measure of the probability of survival of a damaged ship in waves which 

allows for all the feasible flooding cases along the ship length. In light of this, 

“waves” represents a range of sea conditions that might be encountered whilst 

suffering a collision incident, thus “s” has the following expression: 

 

@ � > A��

ª®

�
∙ ?ª®|�ÀÁÁ���� ∙ ��Â£Ã���� 

 

(22) 

 

Where ?ª®|�ÀÁÁ���� denotes the probability density distribution for sea states expected 

to be encountered during a collision incident. Its integral solution �ª®|�ÀÁÁ����  is 

approximated by equation (19). 	��Â£Ã����	represents the probability that the ship will 

survive in that sea state for a given a flooding case. 

 

The proposed relationship in equation (20) gives the probability that the ship will 

capsize for a specific damage within given time ( �� � 30	 minutes). So the 

corresponding survivability is expected to decrease with increasing sea state, and to 

vary from 1 to 0 as stated below. 

  

��Â£Ã���� � 1  ����, � � �	
│(, / � ��, :%Ä�&	Å�Æ�Ç	<�   (23) 

 

Comparing with the recent formula adopted in SOLAS 2009, 	��Â£Ã���� for given 30 

minutes is simplified as: 

 

��Â£Ã���� � v1, �� È �@�£bB0, �� f �@�£bB 
  

(24) 

 

Where the mean critical sea state �@�£bB  is given in equation (18) proposed in 

HARDER project. In this case, the integral (22) can be solved in a simple way as 

below: 

 

@ � > A��

ª®�ÉÊ

�
∙ ?ª®|�ÀÁÁ���� � �ª®|�ÀÁÁ����£bB� 

  

(25) 

 

Depends on the above assumption, the probability “s” has been assigned as the 

cumulative probability distribution for the wave heights recorded during collisions. 

Consequently, two questions are put forward of 1) is the assumption behind equation 

(24) adequate to approximate the observable survivability? And 2) since all 

experimental tests on survivability for given a flooding case were preformed for 30 
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minutes, the current probability “s” is actually modelled as	"@�� � 30$%&�". In this 

case, is such evaluation time sufficient to define the ship survivability for longer time? 

A series of discussion and comparison have been made in SSRC and proved that 

equation (25) has favourable response to elicit a rational survivability assessment.  

 

At this time, the assigned probability “s” for a specific flooding only depends on the 

input parameter	���£bB. As shown in equation (18), 	���£bB  is formulated by the GZ 

curve properties at the damage equilibrium stage, which derived based on the 

benchmarking tests performed in project HARDER. After that, the probability “s” can 

be transferred as equation (17). Explicitly, this recent formula of “s-factor” is not 

linked with the sea environment encountered at the instance of collision 	�� directly, 

but it uses an intermediate measure 	���£bB to the damaged stability of the ship. Hence, 

the accuracy of the relationship given in equation (18) has a great effect on the 

assigned probability “s”. For the purpose of keeping the knowledge-based uncertainty 

to a minimum, a new model assessing 	���£bB	has been proposed in Task 4.2 by 

modifying parameters of equation (18) to GZmax = 0.25m and Range = 25 deg.  

 

Other than the conventional method for evaluating the factor “s”, regarding the 

established model in equation (21), there is no 	���£bB  to be considered any more. 

Currently, straightforward input information of the sea conditions during a collision is 

needed. Thus the transition in 	��Â£Ã����  from 1 to 0 can be identified and the 

probability “s” for a specific flooding within 30 minutes can be assigned as Figure 32. 

 

 
Figure 32 The process of assigning the probability s for a specific flooding case  
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Based on the expression of equation (22), it appears that for a specific flooding case, 

the information required for assigning the probability “s” within given time actually 

comes from two aspects: 1) the density distribution for a range of sea states supposed 

to be encountered during a collision, 2) the probability of survival of the damaged 

ship corresponding to each considered sea state. A more clear and logical way to 

explain such relationship is made in Figure 32,  it can be seen that for a flooding case 

where the measured	���£bB � 2.72$, the probability “s” determined as an averaged 

survivability below �� � 4$ is equal to 0.9443, based on equation (15) for � � 30 

minutes. 

 

With the demonstration of the new method (Model 2) as a suitable way of assessing 

the probability “s”, the remaining part provides the comparison between the new 

estimated “s” from Model 2 and the one measured complying with the probabilistic 

damage stability standards of SOLAS 2009. The latter computation is performed 

through the ship design software NAPA. Focusing on the initial condition of “M/V 

Estonia” under the deepest draught (see Table 4), at this time, there are 1200 feasible 

flooding cases extended up to 5 zones’ damages along the ship length. Regarding the 

original established Mode 2 equation (21), Figure 33 shows the difference when the 

new “s” compared with SOLAS’ results.  

 

 
 

Figure 33 Comparisons of “s-factor” between the original Model 2  

(50
th

 percentile of	() and SOLAS’s results for 1200 expected flooding cases 
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Table 11 Summary of “s-factor” comparison for Figur33 

 

“s-factor” comparison No. of case % out of 1200 cases  

New > SOLAS 2009 39 0.0325 

Top Left (SOLAS<0.2 &New >0.2) 29 0.0242 

Bottom Right (SOLAS>0.2 & New <0.2) 83 0.0692 

 

When comparing the original Model 2 with SOLAS 2009 estimated “s-factors” for the 

total 1200 flooding cases, the results depicted in Figure 33 are against the 

observations in Figure 26.  Regarding the expressed survivability of the RoPax vessel 

“M/V Estonia”, Figure 26 using 	�@�£bB as a simple measure indicates that Model 2 

produces an overestimation in contrast to SOLAS results. However, referring to the 

summary of Table 11, it is obvious that Model 2 is stricter than the recent standard of 

SOLAS 2009, as only 39 flooding cases have been over-predicted. 

 

At the beginning of this section, it has been explained that quantifying the uncertainty 

in Model 2 can be achieved by establishing uncertainty bounds on each model 

coefficient. Thus to ensure Model 2 is capable of providing conservative predictions 

with high reliability, a pragmatic solution is to adjust slightly the variations of model 

coefficients within their uncertainty band. Table 10 presents the adjusted Model 2 

after tuning all coefficients from the sampled mean to 55% quantile of ��(|,�. By 

doing so, a new comparison of “s-factors” can be updated between the adjusted Model 

2 and SOLAS’s. Apparently, both Figure 34 and Table 12 disclose considerable 

conservatism has been built into Model 2 when all ( adjusted simultaneously.   

 

 
 

Figure 34 Comparisons of “s-factor” between the adjusted Model 2  

(55
th

 percentile of	() and SOLAS’s results for 1200 expected flooding cases 
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Table 12 Summary of “s-factor”comparison for Figur34 

 

“s-factor” comparison No. of case % out of 1200 cases  

New > SOLAS 2009 4 0.0033 

Top Left (SOLAS<0.2 &New >0.2) 2 0.0167 

Bottom Right (SOLAS>0.2 & New <0.2) 107 0.0892 

 

In accordance with the observations from Figure 34, it is noted that the adjusted 

Model 2 is too conservative to be applied in practice. More efforts should be made to 

investigate the hidden problems with the original Model 2. As mentioned in the 

foregoing, there is still much room for improving the selection of variables. Presently, 

the variable !" !�	⁄ is adopted for describing the character of hull breaches. The nature 

of this variable must be clarified. 1) The data of damage length !" 	is assembled for 

Model 2 training. However, those assessed 1200 flooding cases are described by 

flooding extent along with the subdivision boundaries. 2) The damage length of the 

benchmark tested cases spans up to 2 compartments according to the guidelines in the 

Annex of the Stockholm Agreement (Directive 2003/25/EC). Nevertheless, SOLAS 

2009 accommodates for all feasible damage lengths. Thus the variation of flooding 

extent during model testing is too limited comparing with SOLAS 2009. Obviously, 

these two methods seem not comparable in some cases. Especially for the damages 

have large flooding extent.  

 

In light of the problems defined above, it is apparent that the current expected value of 

9¾¿ ¾®⁄ � 54.6001 is not appropriate to reflect the actual situation. Hence, its related 

uncertainty needs to be minimized. A further model adjustment is needed against this 

coefficient.  As a result, 	9¾¿ ¾®	⁄  is tuned by following the approximated normal 

distribution	�6 � 54.6001, G � 12.3074�. It turns out that the estimated “s-factors” 

by making use of Model 2 towards the actual situation while decreasing the value 

of		9¾¿ ¾®	⁄ . In order to achieve a balance that the model is relatively conservative and 

to reflect the reality, an attempt has been made by using 0.1 quantile of		9¾¿ ¾®	⁄ and 

taking 0.59 quantile of the remaining parameters. Table 13 lists the readjusted ( and 

Figure 35 outlines the updated “s-factors” estimated through the readjusted Model 2. 

 

Table 13 Readjustment of Model 2 coefficients  

 

Parameter Mean SD Tuning (’s quantile 

α (interception) -57.2016 2.9094 0.59 -56.5396 

β1 for Hs 1.6203 0.0717 0.59 1.6366 

β2 for KG/KMT 20.7519 1.8823 0.59 21.1802 

β3 for T/D 42.8016 2.7077 0.59 43.4177 

β4 for Heel 0.4126 0.0742 0.59 0.4295 

β5 for Ld/Ls 54.6001 12.3074 0.10 38.8275 
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Figure 35 Comparisons of “s-factor” between the adjusted Model 2 

 (10
th

 percentile of	9Ì	) and SOLAS’s results for 1200 expected flooding cases 

 

Table 14 Summary of “s-factor” comparison for Figur35 

 

“s-factor” comparison No. of case % out of 1200 cases  

New > SOLAS 2009 44 0.0367 

Top Left (SOLAS<0.2 &New >0.2) 30 0.0250 

Bottom Right (SOLAS>0.2 & New <0.2) 42 0.0350 

 

For the RoPax vessel “M/V Estonia” given a specific loading as the deepest draught 

(DS) occurred, Table 14 represents the survivability of almost 4% flooding cases are 

overestimated by employing the adjusted Model 2. Further interpretation of such 

modified model is still requested, especially for those cases with “s” locate at the top 

left (non- conservatism) and bottom right (lesser survivability) of Figure 35.  

 

This section reiterates uncertainty quantification on the established model (Model 2) 

for survivability prediction is essential. Uncertainty existed in the model output is 

mainly caused by the uncertainty of the model inputs. By this way, the problem is 

finally converted to quantify the uncertainty in each model coefficient which accounts 

for the impact of each variable on the model output. On the basis of analyzing the 

rationality of current variables and the flexibility of the assembled data, the most 

uncertain variable has been pointed out as the flooding extent. Then a pragmatic 

solution is put forward as tuning the variation of the pertinent coefficients. 

Comparisons of estimated “s” between the new model and the stability standard 

SOLAS 2009 (Figure 33 to Figure 35) suggest that the model after adjustment is able 

to meet the target while taking a compromise of the estimation between conservative 

and reliability. 
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6.2 Probabilistic Sensitivity Study 
 

Model 2 is derived from Bayesian data analysis for a binary regression model. 

However, when using such regression analysis to produce a model with an analytical 

expression, it is imperative to make sure that the variables used in the model are the 

ones of the most interested for the uncertainty analysis, and that the model is not used 

outside the parameter range defined by the regression analysis. Being aware of this, a 

systematic and thorough sensitivity study is needed for understanding how do 

individual inputs pertaining to Model 2 contribute to the uncertainty in the output.    

 

Based on an extensive discussion in the previous section, it is exposed that some 

inherent parameter uncertainties existed in Model 2, especially the extent of flooding 

during crises seems to be the most critical knowledge-based (Epistemic) uncertainty 

prevailed. After tuning the variation of the model coefficients within its range, the 

latest Model 2 complying with Table 13 is adjusted as  

 
        	
����, � � �	
│(, )� � Φ�56.54 � 1.64�� � 21.18 º»

º¼� � 43.42 � 0.43��� � 38.83 ¾¿
¾®

	�           

 

(26) 

 

Referring to Chapter 4 of Deliverable 4.2, it described a set of external parameters 

affecting ship stability after flooding could be divided into three parts, (a) the hull 

breach, characterised by set Ω = {x,λ,b,h}of its location, length, penetration and 

height, (b) ship draught T  and (c) the environment expected in a collision Hs|coll. 

Corresponding to the input variables included in equation (26) above, the variations of 

the sea environment Hs , the initial loading at a specific operational draught 

( �� ���⁄ ) and the damage attributes (Heel, 	!" !�⁄ ) are going to be used for 

understanding how changes in each of them influence the rate of ship stability loss in 

an actual casualty case.  

 

In subsequent parts of this section, first, a global sensitivity study is conducted to rank 

the impacts of model inputs on the output since a wide spread of all the inputs is 

required. In such a case, all the data collected in a series of physical model tests are 

referred to Table 7. Second, due to the input variable !" !�⁄  in equation (26) is the 

only datum employed to represent the extent of flooding. In reality, joint information 

Ω = {x,λ,b,h} charactering the hull breach should be allowed for. A local sensitivity 

study is performed to identify the importance of considered variables (Hs, Heel, Ω) in 

Model 2 at a specific draught for the uncertainty analysis. In contrast to the study at a 

ship level, the data applied at this time come from the numerical simulation as given 

in Table 6 and Table 7 of Deliverable 4.2. Therefore, the randomness of the extent of 

flooding based on Monte Carlo sampling has been simulated. 
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6.2.1 A Ship Level Investigation 
 

Given the updated Model 2 in equation (26), all the model coefficients are 

considered to be constant. The next step is to define the range of variation for all 

the model inputs.  

 

• The sea environment: In accordance with sea states performed in Task 4.1, 

the variation of the sea environment Hs is assumed to follow a uniform 

distribution on the interval from 2m to 3m. 

• The centre of gravity: The initial loading condition at a specific operation 

draught is represented by a ratio of the centre of gravity (KG) over the 

transverse metacentre (KMT), the variation of such non-dimensional input 

is assumed to follow a normal distribution, the relevant mean and standard 

deviation are sampled from the experimental data set outlined in Table 7. 

• The heel angle at the damaged equilibrium stage: Since all feasible 

flooding extents are considered in compliance with SOLAS 2009, 

according to the discussed 1200 flooding cases on MV Estonia generated 

by NAPA in the prior section 6.1, the floating position of the ship for each 

damage can be achieved through a damage hydrostatics calculation. In this 

study, heel angles corresponding to flooding cases up to 4-zone damages 

are selected and the deviation of such variable is assumed based on a 

truncated normal distribution. 

• The extent of flooding: First, suppose that the damage length Ld is the 

single parameter to be used for charactering the extent of flooding. Second, 

in order to avoid the variation in damage lengths is limited by the model 

testing, resembling the collection of heel angles, the variation of the 

flooding extend is assumed to have a truncated normal distribution. All 

feasible sizes of flooding up to 4-zone damages are taken into account. 

 

In response to the foregoing assumptions, the values of all the model inputs are 

simulated using a sample size of 10,000. The range of variation for each of them is 

clearly expressed in Figure 36. Next, substituting the equation (26) with the 

sampled values of one of these four model inputs, meanwhile, the rest parameters 

keep using sample means as the inputs. Thus, the variation of the rate of ship 

capsizing ����, � � �	
|(, )�  against the assessed input variable xi can be 

estimated in turn. Table 15 gives a summary of the sampled input values coming 

from Figure 36. Both the largest observations of the heel angle and the extent of 

flooding !" !�⁄  are 12.568 deg and 0.258 respectively.  

 

Table 15 Summary of the sampled values of various model inputs 

 

 Mean SD 0.50% 50% 99.50% 

Hs 2.4989 -  2.0057 2.4965 2.9964 

KG/KMT 0.8430 0.0379 0.7450 0.8436 0.9375 

Heel 3.3210 2.1085 0.0390 3.0851 9.8228 

Ld/Ls 0.0892 0.0425 0.0036 0.0876 0.2069 
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Figure 36 Histograms of model input values, using a sample size of 10,000 

 

Based on solving the adjusted Model 2 in equation (26), 10,000 outputs 

����, � � �	
|(,)� are obtained for describing the rate of capsizing within given 

time period varies with the interested model input changes. The measured effects 

of each input (X= Hs,	�� ���⁄ , Heel,	!" !�⁄ ) on the model output are depicted 

by a boxplot as shown in Figure 37. It can be seen that the “box” for each variable 

indicates the output ����, � � �	
|(, )�	ranges between 25% and 75% quantile. 

The whiskers (e.g. T-shaped lines) represent the highest and lowest datum within 

1.5 m IQR (IQR=75% – 25% quantile) of the upper and lower quantile defined for 

the “box”. Focusing on the variation in the model output which is affected by the 

changes of �� ���⁄ at a specific operational draught, the points beyond the 

extreme of the whiskers indicate the smallest observation away from the lower 

whisker. A wider box and whisker signifies a greater uncertainty in the model 

output given the variation in a particular input. According to such features, with 

respect to Figure 37, it is obvious that the changes in the extent of flooding is 

ranked to have the greatest influence on ship survivability, followed by the 

changes in the angle of heel, the centre of gravity and the sea environment.  
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Figure 37 Boxplot of the results of the model output ����, � � �	
|(, )�	vary 

with each model input (X= Hs,	�� ���⁄ , Heel,	!" !�⁄ ) changes  

 

The significance of the various inputs to the model response depicted above 

(Figure 37) agrees with the findings outlined in the executive summary of 

Deliverable 4.2 where it highlights the extent of flooding, affecting the GZ-curve 

properties, seems to be one of the most critical information needed for confident 

assessment of criticality of flooding situation. Thus the lack of knowledge in 

determining the extent of flooding experienced during crises may lead to the 

greatest uncertainty in the survivability prediction. Table 16 summaries the key 

values represented in the boxplot. The mean value of the rate of capsizing pointed 

out as ����, � � �	
|(, )� � 0.801	 is measured given the condition of using 

sample means of all inputs variables. 

  

Table 16 Summary of the variation (uncertainty) in the model output 

 

Var_Pf(t0,Y=cap|β,X) Var_Hs Var_KG/KMT Var_Heel Var_Ld/Ls 

Pf 

Min. 0.51160 0.01710 0.28080 0.00442 

1st Qu. 0.66780 0.61720 0.55560 0.36409 

Median 0.79990 0.80460 0.77160 0.78271 

Mean 0.77660 0.74544 0.72740 0.65781 

3rd Qu. 0.89560 0.91842 0.92060 0.97496 

Max. 0.95210 0.99997 1.00000 1.00000 
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According to Figure 37, the percentage change of ����, � � �	
|(, )� (∆�.) as 

revealed in Figure 38 is a more intuitive way to express a change in the model 

output compared to its measured mean value (Pf=0.801). At this time, the 

percentiles 0.5%, 99.5% are used to show the range of 99% uncertainty in the ∆�. 

contributed by the different variations in the inputs of Model 2. The corresponding 

key values are summarized in Table 17. By doing so, this boxplot can be regarded 

as a quantitative means of measuring the significance of several input variables to 

the model output. 

 

 
Figure 38 Sensitivity analyses of the input variables on percentage changes in 

����, � � �	
|(, )� 

 

Table 17 Summary of the variation (uncertainty) in the percentage change of the 

model output (∆Pf) 

 

∆Pf Var_Hs Var_KG/KMT Var_Heel Var_Ld/Ls 

Mean -0.03059 -0.06944 -0.09200 -0.17883 

SD 0.16313 0.26528 0.26684 0.42505 

99.50% 0.18781 0.24558 0.24817 0.24835 

50% -0.00141 0.00442 -0.03679 -0.02291 

0.50% -0.35683 -0.86338 -0.64260 -0.99180 
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6.2.2 A Scenario Level Investigation 
 

The prior global sensitivity study suggests that the variable 	!" !�⁄  plays the most 

significant role in estimating the rate of ship stability loss during crises. However, 

considering a real hull breach which is normally characterised by a set of 

parameters Ω = {x,λ,b,h} of its location, length, penetration and height. 

Apparently, the damage length	Ð � !" 	is insufficient to disclose the impact of the 

extent of flooding on the ship stability after damage. In this way, a new predictive 

model (relationship) is desired to be established that allows examining the 

sensitivity of the model output ����, � � �	
|(, )�	to a group of rearranged input 

parameters as given in Table 18. Noticeably, a comprehensive description of the 

flooding extent including four variables is available.  

 

Table 18 Input variables for a local sensitivity study 

 

Category Variable 

Sea environment �� 

Damage 

attributes 

Heel in EQ ���  
Location /b/!� 
Length !"/!� 

Penetration ,/0.5Ñ 
Height �/� 

 

As described in section 6.1, the most straightforward aspect of uncertainty 

analysis is uncertainty propagation. Abstractly, this process begins with a 

mathematical model of the measurement	� � ?�)�, where X is a vector of the 

input parameters. Uncertainty analysis aims to assess the uncertainty in Y that is 

driven by the uncertainties in X. The uncertainty in X is usually specified as 

probability density function. The uncertainty in Y is then calculated by 

propagating the uncertainty in X through the model	� � ?�)�. Being aware of this, 

a binary regression model is written as ��� � �	
|(, )� � Φ�8 � ()�	has been 

identified in this study. It looks straightforward to solve this uncertainty 

propagation formula. However, the biggest difficulty is in the calculation of model 

coefficients (  of input variables (also called sensitivity coefficients). Thus, 

estimation of model coefficients is deemed as the crucial issue in this localized 

sensitivity study. The entire process will go along with the regression model 

development consisting of data preparation, model estimation and model 

validation. 

 

First, for achieving the exhaustive information of the extent of flooding as a result 

of damage, in contrast to the elicitation of Model 2, the data collected presently 

for a new model training come from the numerical simulation as reported in Table 

6 and Table 7 of Deliverable 4.2. So the dataset of sensitivity study now consists 

of 1) 200 runs of repetitive simulation for a range of sea states that have a fixed 

damage opening (i.e. P6-7.1.0) including transient stages of flooding. 2) 1100 runs 

of Monte Carlo-based simulation for a range of sea states that allow for random 

changes in the damage extent. Since the initial loading of the typical RoPax vessel 

“MV Estonia” defined in simulations complies with the condition performed in 

physical experiments, therefore the variation of the 	�� ���	⁄ is not to be 

considered any more. The factors characterizing a hull breach are defined non-
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dimensional. The damage location xi denotes the length from the stern to the 

midpoint of the damage opening in the longitudinal direction. The damage 

penetration y is measured from the centreline of the ship to the side where suffered 

damage. The damage height z determines the vertical distance from the base line 

of the ship to the top of the damage, and the parameter H indicates the height up to 

the top of the car deck. In this study the hull is assumed water tight up to Deck 4 

i.e. H = 13.40m above the base line. All the mentioned terms are clearly remarked 

in Figure 39.  

 

 
 

Figure 39 The extent of flooding as a result of damage  
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Second, depending on a set of input variables clarified above, the regression 

model used for the local sensitivity study is reset as: 
        

	����, � � �	
│(, )� � Φ�8 � 90�� � 91
�
¾®

� 92
¾¿
¾®

� 9©
�

�.Ì� � 9Ì
Ò
ª � 9Ó��� 	�           

 

(27) 

 

As described in Chapter 4, the estimation of sensitivity coefficients ( in equation 

(27) is based on Bayes’ theorem. It is reasonable to suppose that prior 

distributions of these coefficients are approximately Normal. Synthesizing 

disparate information from numerical simulations and the prior knowledge, the 

target posterior distributions of ( corresponding to each input variable can be 

approximated by MCMC method (i.e. Metropolis-Hastings algorithm). When 

10,000 iterative samplings are performed, uncertainties in (  are specified by 

probability distributions as showed in Figure 40. A parallel summary of simulated 

results are outlined in Table 19.  

 

 
 

Figure 40 MCMC approximations to posterior distributions of (  

(Sensitivity coefficients)  
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Table 19 Summary of Metropolis-Hastings samples of ( (sensitivity coefficients) 

 

Parameter Mean SD 99% posterior interval 

α (interception) -6.771 1.1048 -10.4096, -3.5973 

β1 for Hs 0.771 0.0272 0.698, 0.852 

β2 for xi/ Ls 8.0716 4.3566 -5.2479, 23.0596 

β3 for Ld/Ls 0.4958 1.9635 -5.7976, 6.7729 

β4 for y/0.5B 0.1709 0.1445 -0.2682,0.5681 

β5 for z/H 1.8439 0.2407 1.1004, 2.5931 

β6 for Heel 0.3428 0.1411 -0.1021, 0.7517 

 

An intuitive analysis of the sensitivity of the rate of capsizing within given time 

����, � � �	
│(, )�  with reference to several input parameters is achieved 

regarding the observation of posterior probability distributions depicted in Figure 

40. As can be seen that the uncertainty (within 99% quantile-based posterior 

interval) in the coefficient 92 contains zero, it indicates the model output is not 

sensitive to its related parameter!" !�⁄ . Such finding may reasonably be explained 

by the source of data used in the calculation of sensitivity coefficients. Since the 

prepared dataset represents the results of numerical simulation, while the ship is 

assumed to be exposed to a set of hull breaches leading to the flooding extent 

same as P6-7.1.0. Figure 41 demonstrates 100 random damage extents based on 

MC sampling which are investigated for a range of sea states. Clearly, the 

flooding domain which the sampled damage openings result in is no more than 

two damage zones. Under such circumstance, the damage length Ld seems 

insignificant in the model at this time. Likewise the coefficient 9©	 (, 0.5Ñ⁄ ) 

corresponding to the damage penetration is the second factor having minor effect.   

 

 

 
 

Figure 41 A set of 100 hull breaches leading to flooding extent P6-7.1.0 on MV 

Estonia. The bars represent location and length of hull breach. 

 

Considering the sensitivity of all the unknown coefficients	(, the next step is to 

simplify the model as equation (27) through excluding irrelevant input parameters 

to strive for model parsimony.  The first attempt is made to create a new 

relationship without the parameter as the damage length	!" !�⁄ . The revised range 
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of variation in other coefficients ( is outlined in Figure 41. Apparently, the impact 

of eliminating such parameter on the model output is unimportant since the 

changes in the rest effects ( are not obvious. It turns out again that the damage 

penetration 92	(, 0.5Ñ⁄ ) may not be considered in the model.  

 

 
 

Figure 41 MCMC approximations to posterior distributions of (  

(Exclude the parameter	!" !�⁄  )  

 

Accordingly, the second attempt is to rewrite the model including four input 

variables as show by equation (28).  

 
	

	����, � � �	
│(,)� � Φ�8 � 90�� � 91
/b
!�

� 92
�
� � 9©��� 	� 

 

(28) 

 

By the same token, uncertainties associated with remaining input parameters are 

measured regardless of the damage length and the damage penetration. See Figure 

42, the posterior densities ��(|,�  interpret all these assessed variables are 

dominant, as the 99% quantile-based posterior intervals for all the coefficients do 

not contain zero. The positive magnitudes of ( simulated indicate that the increase 
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in the value of each input parameter will likely increase the rate of capsizing 

within given time after flooding. On the basis of Table 20, a new regression model 

used for uncertainty propagation is estimated.   

 

 
 

Figure 42 MCMC approximations to posterior distributions of (  

(Exclude parameters	!" !�⁄  ,	, 0.5Ñ⁄ )  

 

Table 20 Summary of Metropolis-Hastings samples of ( (regarding Figure 42) 

 

Parameter Mean SD 99% posterior interval 

α (interception) -8.5323 0.9733 -11.7929, -5.3017 

β1 for Hs 1.4283 0.0614 1.258,1.626 

β2 for xi/ Ls 7.231 3.9117 -4.4368,18.8246 

β3 for z/H 2.3296 0.3189 1.4807, 3.3613 

β4 for Heel 0.4322 0.0889 0.1715, 0.7505 

 

Third, a further validation study on the developed model is undertaken. As 

reported in deliverables of Task 4.1 and Task 4.2, according to physical model 

tests and numerical simulations, the measured rate of capsizing for a range of sea 

states is presented in Figure 43, when the ship is exposed to a specific flooding 

case P6-7.1.0. The derived probability to capsize 
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followed by the aforementioned sensitivity analysis is also included. Because the 

proposed regression model is straightforward for uncertainty propagation, 99% 

uncertainty bounds of the rate of ship stability loss within 30 minutes are 

illustrated simultaneously. It is noticeable that the results achieved from different 

methods are comparable. The most distinguished feature of the established 

regression model is to quantify the uncertainty in assessment of ship survivability 

explicitly. 

 

 
 

Figure 43 M/V Estonia, posterior distribution of the rate of capsizing in a flooding 

case P6-7.1.0 

 
.�� � 30$%&, � � �	
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This section conducts extensive sensitivity studies on the measurement of 

contributions of input variables to the model outcome. The importance of each 

predictor variable in a model can be evaluated if its related sensitivity coefficient 

is known. Subsequently, model simplification should be realized without 

consideration of irrelevant inputs.  Since variations in all the coefficients are 

specified by probability density functions, uncertainties in the inputs ) are easily 

propagated to the uncertainty in the output	
.�� � 30$%&, � � �	
|(, )�. In this 

way, two aspects pertaining to this proposed methodology in assessment of ship 

survivability are disclosed as which allowing for systematic sensitivity analysis 
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and uncertainty propagation. Further work is still needed on the development of 

predictive models based on expanding the data generated from numerical 

simulations. Greater changes with input parameters in a model are expected for 

performing a thorough sensitivity study at a ship level. Eventually, a simplified 

regression model is adequate to represent the more complex computer model. 

Therefore, a fast and accurate assessment of ship survivability can be completed 

for design optimization or decision support in emergency situations.      

 

7. CONCLUSION 
 

Attempting to get a fast and rational survivability assessment for further deployment 

in decision support in emergencies, this report has focused on establishing the 

predictive regression models for the survivability assessment of the damaged RoPax 

vessels within given time, concurrently the uncertainty bounds on time to capsize 

models have been assigned in a probabilistic manner. In short, a pragmatic approach 

to assign quantitatively the uncertainty impact has been presented. 

 

A systematic description of the development of the probabilistic predictive model has 

been conducted through model identification, model estimation and model application 

as clarified in Chapter 3, 4 and 5, respectively.  Extensive uncertainty analysis and 

sensitivity studies have been performed in Chapter 6 for better understanding of the 

contributions of individual inputs in the model to the uncertainty in the output. It has 

been mentioned that the uncertainty analysis in the process of the ship survivability 

assessment is important. With respect to the first principle models, the inherent 

uncertainties in modeling are commonly deriving from both the parameter uncertainty 

and the model uncertainty. The treatment of such two groups of uncertainties is 

significant to reduce the uncertainty caused by vague input information and imperfect 

models. 

 

For better describing the physical phenomenon of ship capsizing, the performance-

based experimental observations and the numerical simulation results are deemed as 

one of the most reliable sources of information for the predictive model estimation. In 

this context, the applied data is related to RoPax vessel only rather than other ship 

types. Nevertheless, identical methodology can be adopted for allowing the damage 

stability assessment of cruise ships.  As discussed in D4.2 and the previous Chapter 6, 

the uncertainty due to a lack of precise input information, such as the extent of 

flooding, or sea state is far more critical to the projection on what will happen, than 

the uncertainties underlying the established model itself for either RoPax or cruise 

ships. However, a series of experiments for RoPax and cruise ships was conducted in 

the project GOALDS, the available data is to be studied separately based on different 

ship types for mitigating the model uncertainty. More effort should be devoted to the 

data preparation on cruise ships for further explicit uncertainty quantification in the 

assessment of ship survivability.   
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