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ABSTRACT 

“Design a safe ship” is the best annotation of putting 

human life as the foremost issue. Flooding related 

damage is regarded as the major contributor to risk to 

life, thus the phenomenon of ship vulnerability to 

flooding with quantifiable accuracy must be taken into 

account. Regarding this, a measure of “time to capsize” 

has been respected as a simplified manner to quantify 

ship survivability. Based on the latest research activities 

taken place at the Ship Stability Research Centre 

(SSRC), this paper aims to describe a new methodology 

for modelling the stochastic behaviour of ship time to 

capsize following flooding by deploying Bayesian 

regression techniques for selected Probit model. 

Keywords: ship survivability assessment, probit model, 

Bayesian regression, uncertainty quantification 

 

INTRODUCTION 

The remarkable biggest cruise ship to date MS Oasis of the 

Seas made her debut in December, 2009, holding an excess 

of 8,000 passengers and crew. Evidently ship stability 

safety for passenger vessels is a crucial subject to naval 

architecture and can be hardly overlooked. Stability 

standards have ever been improved by continuous effort to 

ensure the ship attained an adequate safe design. Flooding 

related damage is regarded as a major and great threat to the 

safety of life at sea, thus a reasonable assessment of ship 

survivability after flooding incident commence as a marked 

out target is undertaken frequently and deeply. Hence the 

immediate questions brought forth of 1) How long it takes a 

vessel to capsize from the instant of hull breach given a 

specific extent of damage , loading and environmental 

conditions, and 2) How reliable is its predicted survivability, 

have yet to be answered satisfactorily.  

 

In search of appropriate answers, a measure of “time to 

capsize” has been respected as a simplified way to quantify 

ship survivability by taking into account the related 

confounded physical effects. A time-based mathematical 

model was first proposed by SSRC, (Jasionowski, 2006),                                                               

in the course of the SAFEDOR project (www.safedor.org). 

Correspondingly a series of dedicated physical model 

experiment have been undertaken through a succession of 

related projects partially supported by EC. The collected 

testing records lay a solid foundation for validating the 

reasoning behind the proposed models is currently 

on-going.  

 

On the basis of the developed analytical model and 

benchmark data from survivability tests executed to date, 

this paper attempts to present an alternative for modelling 

stochastically the time necessary for a ship to capsize. The 

most particular attribute of this new method is to state the 

plausible inferences based on gathered experimental data, 

i.e. let the facts speak for themselves. The most direct 

breakthrough of this methodology is to improve the degree 

of common belief of the developed approach addressing 

survivability assessment, and to quantify uncertainty by 

producing the appropriated confidence bounds, thus pace 

the way for further upgrading of the acceptable level. 

 

For the purpose of providing a firm understanding of this 

study, the following sections attempt (i) to provide an 

overview of the state-of-the art in the field of ship 

survivability assessment, (ii) to highlight the significance of 

this study by pointing out the encountered difficulties, (iii) 

to demonstrate the new approach with the achieved results, 

and (iv) to propose the research framework for the future 

steps on this methodology.        

 

STATE-OF-THE ART METHODOLOGY 

The most recent approaches of addressing ship survivability 

assessment consist of probabilistic calculations (IMO, 

2009), analytical model estimation, time-domain numerical 

simulations and physical model testing. It appears that the 

reliability of the acquired prediction is proportional to the 

effort and cost that goes into the adopted methods, which 

intend to shed light on an unknown phenomenon. For 

instance, advanced first principle means, i.e. model 

experiments and numerical simulations, have been favoured 

for such a comprehensive assessment in general. However, 

the associated cost in the process should be considered at 

all times, a compromise must be reached between accuracy 

and practicality.  

 

Analytical time to capsize (ttc) model 

In response to the issue mentioned above, a desired optimal 

“fast and accurate” analytical model UGD, (Jasionowski, 

2006), has been put forward as an alternative. The 

application of such method is intermediate between 

regulation computation and highly complex approaches. A 



great strength of this approach is to quantify the “overall” 

vulnerability of the ship following collision damage 

through a probability distribution of the time to capsize in 

given conditions (Figure 1). Input information is highly 

pertinent to the sij factor for a specific damage case and 

loading. 

 

 

  Figure 1 – Cumulative distribution of probability for time 

to capsize after flooding for a specific damage extent, 

loading and environment conditions

e.g., FT (40min) = 25%, (Jasionowski et al, 2007)

 

Therefore, assuming that such time-based mathematical 

model is efficient to approximate the reality after 

verifications by relevant physical observations,

design point of view, designers could predict

ship survives for sufficiently long time (e.g. 3 hours), to 

allow safe and orderly evacuation of passengers and crew. 

Moreover, from operational point of view, develop

a decision support system for onboard application

chance to remedy the undesirable threats. In such 

circumstances, the intuitive interest lies on the evaluation of 

the ship’s vulnerability to flooding for either imaginary or 

real flooding case considered as an emergency situation. 

The proposed analytical model enables a probability 

distribution of the rate of capsize for the sampled collision 

damage, as demonstrated in Figure 2. 

theoretical distribution of the cumulative probability of 

capsize FT (tcap|Hs) for any value of time (tcap

the appropriate confidence bounds, which 

way to establish an acceptable level of 

model by quantifying its inherent uncertainty. The upper 

bound can be viewed as conservative to afford higher 

confidence with which the results can be used for decision 

making. 

 

 

Figure 2 – Rate of capsizing, pf, for considered

and given time t = 30 min.
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for considered sea states 

given time t = 30 min. 

The underlying concept behind this analytical model for 

addressing the cumulative probability distribution function 

of time to capsize is formulated in equation (1):

 

����� � ��	 · ���	��


�� ��������
�
�

 

The terms wi and pj are the probability mass functions of 

the three specific loading conditions and 

flooding extents, respectively. The term 

mass function for the sea state 

and nHs is the number of sea states 

term 1 � ��,�,������  represents the cumulative probability 

distribution of time to capsize in given conditions, that 

employs the theory of a Bernoulli trial process, 

assumptions that the probability of capsize 

a given set of ship and sea state parameters. Hence, the 

probability that the n
th

 test is a “success” with constant 

probability of success pf occurrence in each test can be 

obtained by equation (2), (“success” means ship capsize):

 ! � 1 � �1 � "#�$                         
 

In general, the period of an experiment lasting 30 minutes, � � 30 ()*, during which capsize is to be observed. The 

number of trails can be determined from 

tcap (in minutes) is considered as the cumulative amount of 

time necessary for ship capsizing. Thus the probability of 

capsize within tcap / t0 number of tests can be re

(3): 
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Explicitly this is the only part 

measurement of ship vulnerability to flooding as shown in 

equation (1), FT (tcap), for a sample flooding case in 

states under consideration. Based on the illustration in 

equation (3), the input information relate

capsizing pf , which is depicted by the cumulative normal 

distribution as demonstrated in figure 2, is presented in 

equation (4): 
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Where the mean value is expressed by the critical sea state 

Hscrit (s) as proposed by equation (5), the 

probability of survival, calculated according to the new 

probabilistic damaged stability regulation for dry cargo and 

passenger ships (SOLAS 2009)
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The stand deviation is derived from an approximated 

capsize band width according to the following

?>�9:=>��� � 0.039 · 9:=>�� I 0.

behind this analytical model for 

addressing the cumulative probability distribution function 

of time to capsize is formulated in equation (1): 

� �J� · "� · K� · L1 � M�,�,��� N �1��OP
�

�����
 

are the probability mass functions of 

the three specific loading conditions and nflood number of 

flooding extents, respectively. The term ek is the probability 

mass function for the sea state Hsk, where 0 < Hsk ≤ 4m, 

is the number of sea states under consideration. The 

represents the cumulative probability 

distribution of time to capsize in given conditions, that 

employs the theory of a Bernoulli trial process, under the 

assumptions that the probability of capsize pf is constant for 

given set of ship and sea state parameters. Hence, the 

test is a “success” with constant 

occurrence in each test can be 

obtained by equation (2), (“success” means ship capsize): 

                                                      �2�  

In general, the period of an experiment lasting 30 minutes, 

during which capsize is to be observed. The 

number of trails can be determined from n � Q-./�RS$ , where 

(in minutes) is considered as the cumulative amount of 

ship capsizing. Thus the probability of 

number of tests can be re-written as 
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Explicitly this is the only part that contributes to the 

measurement of ship vulnerability to flooding as shown in 

, for a sample flooding case in the sea 

. Based on the illustration in 

(3), the input information related to the rate of 

which is depicted by the cumulative normal 

distribution as demonstrated in figure 2, is presented in 
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probability of survival, calculated according to the new 
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In the course of the description of the analytical ttc model, 

the question of the validity of the predicted ship 

vulnerability to flooding derived from this mathematical 

means has been raised. A verification study has been 

performed on the basis of the first principle method, here it 

stresses on a series of physical model tests for 

characterizing the stochastic nature of ship capsizing after 

hull breach. The answer is detailed in the subsequent 

section.  
 

Benchmark data on time to capsize 

An extensive series of specialized physical model tests on 

survivability of RoPax vessels have been undertaken by 

pertinent projects partially funded by EC (HARDER, 

SAFEDOR, FLOODSTAND), and more recently by the 

European Maritime Safety Agency. All these tests 

collectively provide benchmark data for validation of the 

techniques on the prediction of survival time following 

collision damage occurrence. All model tests are carried out 

in accordance with the Directive 2003/25/EC. (EC, 2003) 

 

The key objective of such dedicated tests is 1) to identify 

the boundary of sea states that specifying the variation of 

rate of capsizing (pf) spreads from 0 to 1, 2) to produce the 

scatter diagram for expressing the frequency distribution of 

pf for the considered sea states, and 3) to quantify the time 

to capsize tcap (time available for evacuation) for each test 

run. Ultimately, the assembled data to date would be 

deployed in a validation exercise of the analytical ttc model 

which is introduced in the preceding section. Testing 

records obtained from SAFEDOR and FLOODSTAND 

projects are used as case study for the needs of this paper. 

 

Vessel 1 – Pentalina (SAFEDOR)  

 

A model of the RoPax vessel – Pentalina was constructed in 

scale 1:27, with one compartment flooded (regarded as the 

worst SOLAS damage) below the car deck (Figure 3) with 

the opening on the starboard side. The general hydrostatics 

and stability information in intact and damage conditions 

respectively are summarised in Table 1, (Chen et al, 2009). 

 

 
 

Figure 3 – Pentalina, 1-compartment damage used for 

model testing 

 

 

 

Table 1 – Pentalina, Hydrostatics and stability information 

 

 
 

The survivability tests were completed in beam seas 

conditions and allowed the damaged model for free drifting. 

Approximately 10 successive sea states (Hs) between 1.5 m 

and 2.5 m have been measured, with an interval of 0.1m. 

Each of which was observed by at least 20 different time 

realizations. As a result, a clear range of sea states 

illustrating occurrence of 100% survival and 100% 

capsizing could be achieved. The testing data is 

summarized in Table 2, with a scatter diagram to represent 

the discrete distribution of rate of capsizing (pf) against 

each target sea state in Figure 4.  

 

Table 2 – Pentalina, Experimental test matrix 

 

 
 

 
 

Figure 4 – Pentalina, rate of capsizing within 30 minutes 

based on model tests 

 

Based on the experimental results depicted in Table 2, the 

measured Hscrit = 2.1m where pf = 0.5 has been selected to 

study the time to capsize for the next step. Following along 

with 50 independent survivability tests, the histogram of 

time to capsize (denoted as f) and the corresponding 

Cumulative Distribution Function (CDF) with 99% 

confidence interval are presented in Figure 5.  
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Figure 5 – Pentalina, cumulative distribution of probability 

for the time to capsize (F) given a specific loading, flooding 

extent, and sea environment, within the evaluated time = 30 

minutes.  

 

Vessel 2 - MV. Estonia (FLOODSTAND) 
 

In the same way, other benchmarking tests provide more 

data that can be used for such verification work. EU project 

FLOODSTAND delivered a set of similar physical model 

experiments, which has been carried out at SSPA Sweden 

AB (http://www.sspa.se/). A model of the RoPax vessel 

(M/V Estonia) in scale 1:40 was used. A 2-compartment 

damage on the port side was modelled, as shown in Figure 

6, (Rask, 2010). Some correlated hydrostatics and stability 

information is shown in Table 3. Table 4 and Figures 7, 8 

represent the experimental test outcomes. Wave height of 

2.6 m, where pf = 0.65, is considered for establishing the 

CDF for the time to capsize.  

 

 
 

Figure 6 – M/V Estonia, 2-compartment damage  

 

Table 3 – M/V Estonia, hydrostatics and stability 

information 

 

 
 

 

Table 4 – M/V Estonia, experimental test matrix 
 

 
 

 
 

Figure 7 – M/V Estonia, rate of capsizing within 30 minutes 

based on model tests  
 

 
 

Figure 8 – M/V Estonia, cumulative distribution of 

probability for the time to capsize (F) given a specific 

loading, flooding extent, sea environment, within the 

evaluated time = 30 minutes.  
 

PROBLEM REVEALED 

As can be seen from Figure 4 and Figure 7, there is a 

notable difference between the plotted experimental results 

and the theoretical distributions which were computed from 

the exsiting analytical ttc model. The latter alternated 

between over and under estimation of the unknown 

phenomenon – rate of capsizing for the sample RoPax 

vessel in given conditions. In fact, the outcome explains 

that uncertainty is inherent in both approaches, i.e. 

analytical mathematical model and physical model tests. 

Hence, in order to identify the causes of such difficulty, the 

following points need to be verified in turn:  

1) Some errors are present in the testing process, 

which may affect the recorded data to quantify the 

random nature of the time to capsize.  

2) The proposed analytical model may need to be 

further improved. The input information and its 

sensitivity to the accuracy of input information needs 

to be investigated.   
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The uncertainties associated with the testing process were 

examined first. An inspection of the repeatability of the 

model behaviour in the same testing conditions, as well as 

the repeatability of the achieved sea states in comparison to 

the target environments have been performed. With 

reference to Figure 4, Hscrit = 2.1m for the sample flooding 

case, a verification of the model capsizing at such wave 

height is undertaken by repeating 10 runs of survivability 

tests. The results are summarised in Table 5 and show that 

5 cases of capsize occur out of 10 runs, i.e. pf = 0.5, which 

confirms the previous determination. Moreover, a 

comparative experiment on 10 runs of open tank tests 

(without model) at Hs = 2.1m has been executed. 

Comparison of the obtained wave height between 

survivability tests and open tank tests (Table 6) in 

accordance with the measurements from the fixed wave 

probe, indicated that the actual waves generated by wave 

maker are higher than the targeted 2.1m. However, 

regarding the same time realization, the generated waves 

can be considered with high accuracy regardless of the 

presence of the model in the tank. Figure 9 provides an 

expression of this finding. Additionally, in order to ensure 

that the obtained ship behaviour is reliable, a spectral 

analysis of the modelled environment was performed and 

the area under the wave spectrum indicates that the 

difference between the generated wave energy and the 

theoretically expected one are at an acceptable level of 

agreement (Figure 10).  

 

In the meantime, it is worth noting that a preliminary study 

of uncertainty assessment has been put forward by 

Cichowicz et al., (2009) in order to investigate the possible 

main sources of error regarding the experimental data of 

ship response in roll motion. Although the results do not 

provide answers to many important questions to date, but 

based on this study the broad range of problems 

(uncertainties) associated with model testing measurements 

can be reduced. 

 

Table 5 – Verification of the critical sea state (Pentalina) 

 

 

 

 

 

 

 

Table6 – Open tank tests for 10 different time realizations 

at Hs = 2.1m (Pentalina)   
 

 
 

 
 

Figure 9 – Time domain wave form for the case of 

capsizing (Refer to Table 5, wave JS210HsR02)  
 

 
 

Figure 10 – Frequency domain wave spectrum for the 

capsizing case (JS210HsR02) 
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5 JSHs210R05 2.29 Х

6 JSHs210R06 2.32 Х

7 JSHs210R07 2.29 Х

8 JSHs210R08 2.24 Х

9 JSHs210R09 2.34 Х

10 JSHs210R10 2.32 Х
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On the other hand, attention should be paid on the 

analytical model itself. Concerning the limitations of this 

approach, the proposed prediction of the rate of capsizing 

(pf) follows the normal distribution as expressed in equation 

(4), where uncertainty is directly linked with the mean 

(defined as the critical Hs) and standard deviation of the 

model. An obvious diffifultly is to work out the mean value, 

which is associated with the “si,j” factor for each specific 

damage case and loading, according to equation (5). 

Thereby a common approval for the equation of “s” is a 

prerequisite for getting the theoretical critical sea state Hscrit. 

However, it has not been confirmed yet especially for 

RoPax vessels. Furthermore, additional complexity related 

to the derivation of the standard deviation according to the 

existing experimenal data. Currently, a linear equation 

containing Hscrit has been used, equation (6),  to deal with 

this factor, which was developed from a regression of the 

capsize bandwidth, (Jasionowski, 2006). Such distance 

(Figure 11) between Z [ 2.5758?  specifies that there is 

99% confidence that the variation of the critical sea state 

where pf = 0.5 spreads within this band exactly. However, 

the approximated linear expression of capsize bandwidth (2 

× 2.5758?) can not be brought into wide use for the entire 

group of intertested vessels or damage scenarios, as the size 

of test matrix has been limited for practical purposes. So it 

becomes obvious that such an analytical model for 

survivablity assemssemt has substantial margin for further 

improvement. Until then, making a good inference about 

the equation of interest on the basis of the observed data 

could afford a new surge of thinking that tackles the 

identified gap between the analytical model and the model 

test results. Therefore, the manner in which the available 

test data can be used to represent reality will be the focal 

point of the next chapter. 

 
 

Figure 11 – The concept of a capsize band  
 

A NEW APPROACH THROUGH INFERENCE  

This approach builds on recorded experimental data and 

intends to offer prediction of the ship vulnerability in a 

specific sea environment within a given time after flooding 

has commenced. The obtained data is the core of such 

approach, and has definitive effect on the outcome. The 

traditional way to make an approximation of the 

observation by assigning a regression curve is inefficient in 

this case. The following sections endeavour to introduce the 

major algorithms applied in this technique in detail. 
 

 

 

 

Generalized Linear Model (GLM) for Binary Data 

In the knowledge that the essential activity is virtually to 

model relationships between several physical variables 

(loading conditions, flooding extent, environmental 

conditions) and the ship response when subject to flooding 

damage, some sort of regression analysis is needed. Each 

single observation of the status of the ship (survival or 

capsizing) has one of the two outcomes, denoted by 0 and 1. 

Thus the classical regression analysis is not suitable as the 

dependent variable (i.e. ship behaviour) is a typical binary 

parameter. A more sophisticated method for analyzing 

binary response data is needed. In practice, one of the 

original models, known as probit model, (Dobson & 

Barnett, 2008), has been identified as a promising solution 

in addressing such difficulty.  

 

The probit model was developed by Bliss, (1934), in an 

attempt to study the relationship between the dosage and 

the mortality. Responses of such model were the 

proportions (or percentages) of ‘success’ π, as a function 

of the dosage level, x. For a randomly selected subject, let 

the binary response variable, Y =1 if the subject dies, or 

Y=0 indicates the subject survives. For a fixed dosage x, the 

probability of a randomly selected subject success (death) 

is:  

 ^�_� � `�a � 1|c � _� � Φ�d I e_�                              �7� 
 

Let Φ denotes the cumulative probability function for the 

standard Normal distribution N (0, 1). Thus in GLM form, 

 Φfgh^�_�i � d I e_                                                               �8�  
 

is the probit model. 

 

 
 

Figure 12 – A simple probit model 

 

Deployment of the probit model offers the following 

benefits: 

 

• The response curve for ^�_� has the appearance 

of the normal CDF with mean Z � �d/e  and 

standard deviation ? � 1/|e|, as shown in Figure 

12. So shapes of different CDF occur as α and β 

vary. Replacing x by βx permits the curve ^�_� to 

increse at a different rate than the standard CDF 

(or even to decrease if β<0); varying α moves the 

curve to the left or right. This flexibility offers a 

unique platform for presenting the response 

variable, “ship behaviour”, probabilistically, which 

is in line with the exiting technique of getting the 

rate of capsizing  pf, equation (4). 



• The model can be extended to include more than 

one independent variable at a time by adding more 

influencing terms, e. g  d I eg_g IkI e�_� . 

Although current interest lies mainly on the 

establishment of the correlation between "�lm":)nK|�K�)*K�_lp*�)�)p*:� and 9:=>���=qr , 
the model can cater more influencing variables 

simultaneously, e.g. sntqu, vm*wK, etc. 

Bayesian Regression 

Having identified the mathematical model, the relationship 

will be established once the coefficients α,βS  can be 

estimated. Classic solving techniques, such as Ordinary 

Least Square for standard linear model, Fisher scoring 

algorithm for Generalised Linear Model, and 

Newton-Raphson’s Maximum Likelihood estimation 

techniques have received wide recognition. Nevertheless, 

those methods may perform poorly for dealing with small 

samples or models with many parameters. Thereby, more 

attention is being paid to Statistical Inference from a 

Bayesian perspective, (Gelman, 2004), which uses 

probabilities to represent a set of rational beliefs about 

unknown model parameters. Bayes’ theorem, equation (9), 

provides a rational method for updating beliefs in light of 

new evidence from the data. In practice, Bayesian inference 

is a robust technique to estimate the probability of the event 

happening regardless of the sampling size.  

 

"�x|y� � "�x�"�y|x�"�y�                                                              �9� 
 

Bayesian Inference  

 

In accordance with Bayes’ theorem, the physical meaning 

can be derived as: if θ denotes the unobserved population 

parameters of interest, y denotes the observable data. The 

denominator is usually not computed since it is not a 

function of θ. Therefore, the posterior probability "�x|y�is 

proportional to the product of the prior information, "�x�, 
and the collected evidence from the data, "�y|x�. As it can 

be seen, Bayesian inference combines the information from 

the observed data and prior beliefs. In this case, as each 

new observation is obtained, the posterior distribution is 

updated by treating the previous posterior as the prior 

beliefs. Apparently this iterative computation process is 

complicated, and in fact, such difficulty has been overcome 

to a large extent in the last 10 – 15 years due to advances in 

integration methods, particularly, Markov Chain - Monte 

Carlo (MCMC) method. The most common criticism in 

Bayesian Statistics is how to choose the prior, since the 

prior density of θ is user-defined and reflects the user’s 

believes, and therefore it is subjective. However, sometimes 

the prior probability is required to reflect a situation when 

there is a complete lack of knowledge about the interested 

parameter. For this case, MCMC algorithms are very 

attractive in summarizing posterior distribution, as they are 

easy to set up and program, especially require relatively 

little prior input from the users. Some detailed description 

is left in the following part. 

 

 

MCMC algorithm - Gibbs Sampling 

 

Using Bayesian inference for multiple parameter problems, 

for instance the mean and the variance which are the most 

two classic applied measures for describing the data set, 

hence, the equation (9) can be transformed into: 

 

"�Z, ?z|yg, … , y�� � "�Z, ?z�"�yg, … , y�|Z, ?z�"�yg, … , y��    
� "�Z|?z�"�?z�"�yg, … , y�|Z, ?z�"�yg, … , y��           �10� 

 

In this particular case, more than one parameter needs to be 

approximated simultaneously. To do so, the Markov Chain 

Monte Carlo simulation can be employed. It is a general 

method based on drawing values from approximate 

distributions and then correcting those draws to better 

approximate the target posterior distribution. The samples 

are drawn sequentially, with the distribution of the sampled 

draws depending on the last value drawn. The draws form a 

Markov chain. The process follows mainly two algorithms: 

the Gibbs sampling and the Metropolis-Hasting. 

  

In this section, we emphasize on the use of Gibbs sampling 

algorithms to provide an introduction of setting up an 

MCMC algorithm in summarizing posterior distribution. 

Referring to equation (10), the joint posterior probability 

distribution "�Z, ?z|yg, … , y�� can be achieved by iteratively 

sampling the full conditional distribution of μ and σz
 

respectively, e.g. p @μ|yg, … , y$,σzA , p @σz|yg, … , y$,μA 
as each one is a conditional distribution of a parameter 

given everything else. At each iteration, assume it stands at 

a state with parameters }�~� � �μ�~�,σz�~��, a new state 

will be: 

 

1) Sample μ�~�g� � pLμ|yg, … , y$,σz�~�N 

2) Sample σz�~�g� � p �σz|yg, … , y$,μ�~�g�� 

3) Let }�~�g� � �μ�~�g�,σz�~�g�� 

 

The resultant sample will be a dependent sequence of 

vectors for both μ and σz
: }�g�, }�z�, … , }���. In this 

sequence, }�~�g�  depends on }�g�, }�z�, … , }���  only 

through }�~�.  

 

In the case of probit model training, identical principal 

applies except that the interested variables will be �α,βg,βz, … ,β�,σz�. The normal treatment would be 

to establish a matrix containing all the model coefficients, β � �α,βg,βz, … ,β��. Hence, by iteratively sampling 

and updating β and σz
 from their corresponding full 

conditional distribution, the distribution for each coefficient 

can be obtained. 

 

 
 



Confidence interval estimation 

With Bayesian inference, the probit model can be 

constructed through the posterior distributions of estimated 

model coefficients (i.e.α,  βS ). Hence, for each value of 

the independent variables (i.e. Hs), there is a corresponding 

probability distribution of the dependent response variable 

(i.e. ship behaviour). As a result, the establishment of the 

confidence interval of the derived response regarding each 

independent variable value is just a matter of quantile 

estimation.  
 

Preliminary Results 

 

Based on the explanation of the fundamental ideas behind 

this new approach, this section demonstrates the 

preliminary results from an application of binary regression 

with a probit link. Figures 13 and 14 reveal the new 

distributions of the rate of capsizing, from which the 

developed results are contrary to the theoretical distribution 

derived from the analytical ttc model. The displayed new 

Bayesian distribution, cooperated with an estimation of the 

99% confidence intervals, present an excellent fit to the 

experimental results since there is an elimination of either 

over or under estimation. Thus the proposed new approach 

can be considered as a promising alternative to express ship 

behaviour with higher confidence based only on evidence 

of observed data. Modern Bayesian computing can be 

considered as a robust manner to process data analysis.  

 

FURTHER WORK 

 

In the long run, more effort should be invested in two 

aspects:  

 

1) Thorough investigation of the preliminary results. 

A review of the assisted algorithms is necessary.  

 

2) The practical application of the research results 

should be treated carefully.  
 

Refining the probit model 

 

As discussed in the foregoing, one of the strong points for 

employing the probit model is attributed to its ability to 

incorporate multiple independent variables together, i.e.  

(x1, x2,...,xn). This means that dominant variables affecting 

ship survivability can be considered simultaneously. So far, 

only single variable, sea state (Hscrit), has been included in 

the probit link to create the distribution of ^�_� as the 

probability density of the rate of the capsize "�lm":)nK|9:� 
  Φfgh^�_�i � d I eg_g I ez_z IkI e�_�                  �11� 
 

In order to get proper distributions that reflect reality better, 

it is desirable to develop a mathematical model that consists 

of more influencing variables for characterizing ship 

survivability for a given damage of a specific design. This 

could be achieved by includingsntqu, vm*wK, K�l., of a 

damage condition. Therefore, an evolved form of this 

model (see equation (11)) is the generalized application for 

dealing with each damage scenario independently. 

 
 

Figure 13 – Pentalina, new distribution of rate of capsizing 

simulated by Bayesian techniques  

 

 
 

Figure 14 – M/V Estonia, new distribution of rate of 

capsize simulated by Bayesian techniques 

 

Review of MCMC algorithms 

 

It is easy to see that the applied generalized linear model 

(probit link function) include more than one parameter. 

Generally, for many multi-parameter models the joint 

posterior distribution is nonstandard and difficult to sample 

directly. However, this can be overcome by making sample 

from the full conditional distribution of each 

parameter,  p @α|βg, … ,β$,σzA . An iterative MCMC 

algorithm as Gibbs sampling has been used to approximate 

the posterior distribution. However, the precondition of 

such application is when the prior distribution is available 

or desirable (informative), otherwise the full conditional 

distributions of the parameters do not have a standard form 

and the Gibbs sampler cannot be easily used. In such 

situation, the Metropolis-Hastings algorithm is regarded as 

an alternative of approximating the posterior distribution 

corresponding to any combination of prior distribution and 

sampling model. Furthermore, for the non-normal 

generalized linear mixed models, a Metropolis-Gibbs 

algorithm has been suggested to summarize the posterior 

distribution of the parameters in common. For this reason, 

an in-depth study of MCMC algorithms applied in Bayesian 

inference is needed. 
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Implementation of new achievements 

 

Once the probit model can be trained and the new method 

dealing with the survivablity assessment is completed, the 

output "�lm":)nK|9:� will be added to the equation (3) 

for survival time assessment. The ultimate result can be 

summarised by a CDF curve for time to capsize in a given 

damage condition showing a process to compute the ship 

vulnerability to flooding. In order to increase the 

argreement of the results from such probablilic study, 

quantifying its uncertainty is an additional task to be 

undertaken. Thus the methods of setting up confidence 

intervals should be examined. In the end, a higher 

confiderce with the achieved results can be used to form a 

time-based survival criteria for assisting the decision 

support system on board in any emergency situation.  

On the other hand, through the latest research, the new 

harmonised probabilistic rules addressing damaged stability 

(SOLAS 2009) has been pointed out that they are possible 

to create ship designs with significant deficits in safety for 

passenger Ro-Ro vessels, (HSVA, 2009). Hence, additional 

effort should be pursued for affording the most appropriate 

solution to improve current stability standards. The existing 

anlytical time to capsize model can be regarded as a 

rational basis to put forward the recommendation on 

amendment of the SOLAS 2009 damage stability rules, 

because such model applies a correlation between the 

developed “s” factor in rules and the input variable Hscrit, as 

depicted in equation (5). Therefore, the achieved new 

distribution, "�lm":)nK|9:� can be used to formulate a 

new connection between the rate of capizing and the critical 

sea state. In turn, the computed Hscrit may reversely affect 

the “s” factor eventually. Due to the new assessment 

technique presented in this paper is close related to a  

comprehensive study of physical stochastic nature of ship 

capsizes, for this reason some complex underlying physical 

phenomena as an instance of multiple effects of free surface 

on vehicle deck, as well as different ship configurations 

have been implicitly accommodated in the trained model. 

As a result, the achieved distribution of time-based survival 

criteria may support a ’sufficient’ level of safety facilitated 

by SOLAS 2009 for passenger Ro-Ro vessels.  

 

CONCLUSIONS 

In light of the need to further refine the state-of-the-art 

techniques for addressing ship vulnerability to flooding 

through a time to capsize model, this paper focuses on the 

establishment of a new methodology for modelling the 

stochastic behaviour of time to capsize with particular 

emphasis on the underlying principles and its advantages. 

The preliminary results obtained are promising, however, 

further investigation of both data analysis techniques and 

the ensuing applications are needed. It is believed that this 

research has positively contributed towards ship 

survivability assessment. 
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